Interpretability application of the Just-in-Time software defect prediction model

可解释性 计算机科学 软件错误 预测建模 数据挖掘 软件 集合(抽象数据类型) 机器学习 编码(集合论) 粒度 人工智能 可靠性工程 工程类 操作系统 程序设计语言
作者
Wei Zheng,Tianren Shen,Xiang Chen,Peiran Deng
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:188: 111245-111245 被引量:63
标识
DOI:10.1016/j.jss.2022.111245
摘要

Software defect prediction is one of the most active fields in software engineering. Recently, some experts have proposed the Just-in-time Defect Prediction Technology. Just-in-time Defect prediction technology has become a hot topic in defect prediction due to its directness and fine granularity. This technique can predict whether a software defect exists in every code change submitted by a developer. In addition, the method has the advantages of high speed and easy tracking. However, the biggest challenge is that the prediction accuracy of Just-in-Time software is affected by the data set category imbalance. In most cases, 20% of defects in software engineering may be in 80% of modules, and code changes that do not cause defects account for a large proportion. Therefore, there is an imbalance in the data set, that is, the imbalance between a few classes and a majority of classes, which will affect the classification prediction effect of the model. Furthermore, because most features do not result in code changes that cause defects, it is not easy to achieve the desired results in practice even though the model is highly predictive. In addition, the features of the data set contain many irrelevant features and redundant features, which are invalid data, which will increase the complexity of the prediction model and reduce the prediction efficiency. To improve the prediction efficiency of Just-in-Time defect prediction technology. We trained a just-in-time defect prediction model using six open source projects from different fields based on random forest classification. LIME Interpretability technique is used to explain the model to a certain extent. By using explicable methods to extract meaningful, relevant features, the experiment can only need 45% of the original work to explain the prediction results of the prediction model and identify critical features through explicable techniques, and only need 96% of the original work to achieve this goal, under the premise of ensuring specific prediction effects. Therefore, the application of interpretable techniques can significantly reduce the workload of developers and improve work efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lonelymusic完成签到,获得积分10
2秒前
6秒前
粥粥完成签到,获得积分10
8秒前
10秒前
王振有发布了新的文献求助10
11秒前
13秒前
13秒前
刘刘刘完成签到,获得积分10
14秒前
sh完成签到,获得积分10
15秒前
莫誓发布了新的文献求助10
19秒前
你好完成签到 ,获得积分0
20秒前
sunhx发布了新的文献求助10
20秒前
20秒前
iiiid发布了新的文献求助10
22秒前
里维斯完成签到,获得积分10
24秒前
24秒前
彭于晏应助言言采纳,获得10
25秒前
30秒前
情怀应助郭小宝采纳,获得10
32秒前
34秒前
35秒前
周钰波发布了新的文献求助10
36秒前
所所应助bear采纳,获得30
37秒前
白河完成签到,获得积分10
37秒前
39秒前
言言发布了新的文献求助10
40秒前
多肉葡萄发布了新的文献求助10
41秒前
糕手完成签到,获得积分10
41秒前
44秒前
郭小宝发布了新的文献求助10
44秒前
领导范儿应助周钰波采纳,获得10
45秒前
言言完成签到,获得积分10
46秒前
山城小丸发布了新的文献求助10
47秒前
多肉葡萄完成签到,获得积分10
47秒前
47秒前
脑洞疼应助chengmin采纳,获得10
48秒前
Evelyn发布了新的文献求助10
49秒前
大个应助溫蒂采纳,获得10
50秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872