Automated Detection of Multiple Pavement Defects

可用的 分类器(UML) 帧(网络) 光学(聚焦) 计算机科学 人工智能 计算机视觉 电信 光学 物理 万维网
作者
Stefania C. Radopoulou,Ioannis Brilakis
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:31 (2) 被引量:84
标识
DOI:10.1061/(asce)cp.1943-5487.0000623
摘要

Knowing the pavement condition is essential for efficiently deciding on maintenance programs. Current practice is predominantly manual with only 0.4% of inspections happening automatically. All methods in the literature aiming at automating condition assessment focus on two defects at most, or are too expensive for practical application. In this paper, the authors propose a low-cost method that automatically detects pavement defects simultaneously using parking camera video data. The types of defects addressed in this paper are two types of cracks (longitudinal and transverse), patches, and potholes. The method uses the semantic texton forests (STFs) algorithm as a supervised classifier on a calibrated region of interest (myROI), which is the area of the video frame depicting only the usable part of the pavement lane. It is validated using data collected from the local streets of Cambridge, U.K. Based on the results of multiple experiments, the overall accuracy of the method is above 82%, with a precision of more than 91% for longitudinal cracks, more than 81% for transverse cracks, more than 88% for patches, and more than 76% for potholes. The duration for training and classifying spans from 25 to 150 min, depending on the number of video frames used for each experiment. The contribution of this paper is dual: (1) an automated method for detecting several pavement defects at the same time, and (2) a method for calculating the region of interest within a video frame considering pavement manual guidelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小虾米完成签到,获得积分10
1秒前
务实蜻蜓发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
6秒前
6秒前
7秒前
悠然xz发布了新的文献求助10
7秒前
8秒前
曾业辉发布了新的文献求助30
8秒前
haha发布了新的文献求助10
9秒前
9秒前
橙子爱吃火龙果完成签到 ,获得积分10
10秒前
10秒前
Tardigrade完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
cyndi发布了新的文献求助10
13秒前
14秒前
YJ888发布了新的文献求助10
14秒前
16秒前
淮安石河子完成签到 ,获得积分10
18秒前
深情安青应助拼搏山槐采纳,获得10
18秒前
昏睡的洋葱完成签到,获得积分20
18秒前
19秒前
19秒前
lc完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
易怀亮完成签到,获得积分10
22秒前
23秒前
晴天霹雳3732完成签到,获得积分10
23秒前
marco完成签到 ,获得积分10
24秒前
健忘捕完成签到 ,获得积分10
25秒前
青阳完成签到,获得积分10
25秒前
你怎么睡得着觉完成签到,获得积分10
26秒前
无极微光应助途中采纳,获得20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5817867
求助须知:如何正确求助?哪些是违规求助? 5950550
关于积分的说明 15548774
捐赠科研通 4940138
什么是DOI,文献DOI怎么找? 2660776
邀请新用户注册赠送积分活动 1607009
关于科研通互助平台的介绍 1561998