Automated Detection of Multiple Pavement Defects

可用的 分类器(UML) 帧(网络) 光学(聚焦) 计算机科学 人工智能 计算机视觉 电信 物理 万维网 光学
作者
Stefania C. Radopoulou,Ioannis Brilakis
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:31 (2) 被引量:84
标识
DOI:10.1061/(asce)cp.1943-5487.0000623
摘要

Knowing the pavement condition is essential for efficiently deciding on maintenance programs. Current practice is predominantly manual with only 0.4% of inspections happening automatically. All methods in the literature aiming at automating condition assessment focus on two defects at most, or are too expensive for practical application. In this paper, the authors propose a low-cost method that automatically detects pavement defects simultaneously using parking camera video data. The types of defects addressed in this paper are two types of cracks (longitudinal and transverse), patches, and potholes. The method uses the semantic texton forests (STFs) algorithm as a supervised classifier on a calibrated region of interest (myROI), which is the area of the video frame depicting only the usable part of the pavement lane. It is validated using data collected from the local streets of Cambridge, U.K. Based on the results of multiple experiments, the overall accuracy of the method is above 82%, with a precision of more than 91% for longitudinal cracks, more than 81% for transverse cracks, more than 88% for patches, and more than 76% for potholes. The duration for training and classifying spans from 25 to 150 min, depending on the number of video frames used for each experiment. The contribution of this paper is dual: (1) an automated method for detecting several pavement defects at the same time, and (2) a method for calculating the region of interest within a video frame considering pavement manual guidelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vmformation发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助50
3秒前
面包圈完成签到 ,获得积分10
3秒前
栗栗发布了新的文献求助10
4秒前
我需要文献完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
AA完成签到,获得积分10
5秒前
Liangang完成签到,获得积分10
7秒前
7秒前
shan完成签到,获得积分10
7秒前
轻舟完成签到,获得积分20
8秒前
汉堡包应助小囡同学采纳,获得10
9秒前
机灵磬完成签到 ,获得积分10
10秒前
vmformation完成签到,获得积分10
11秒前
Akim应助石家豪采纳,获得10
12秒前
欧阳月空完成签到,获得积分10
12秒前
mingweige完成签到,获得积分10
13秒前
科研通AI6.1应助yi学生采纳,获得10
13秒前
一号小玩家完成签到,获得积分10
13秒前
车宇完成签到 ,获得积分10
14秒前
奋斗含巧完成签到,获得积分10
14秒前
15秒前
king发布了新的文献求助10
15秒前
15秒前
17秒前
沫清川完成签到,获得积分10
17秒前
18秒前
8R60d8应助潇洒的听莲采纳,获得10
18秒前
颠覆乾坤发布了新的文献求助10
19秒前
feng完成签到,获得积分10
19秒前
爆米花应助zgy1106采纳,获得10
19秒前
20秒前
路绪震发布了新的文献求助10
20秒前
小蘑菇应助小张要发论文采纳,获得30
21秒前
22秒前
22秒前
yiyi完成签到,获得积分10
23秒前
ayuziya发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5791891
求助须知:如何正确求助?哪些是违规求助? 5738408
关于积分的说明 15481431
捐赠科研通 4919240
什么是DOI,文献DOI怎么找? 2648128
邀请新用户注册赠送积分活动 1595531
关于科研通互助平台的介绍 1550290