已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Remaining Useful Life Prediction Approach Based on Low-Frequency Current Data for Bearings in Spacecraft

定子 方位(导航) 工程类 特征提取 噪音(视频) 反向传播 振动 计算机科学 人工神经网络 加速度计 人工智能 控制理论(社会学) 机械工程 物理 控制(管理) 量子力学 图像(数学) 操作系统
作者
Danyang Han,Jinsong Yu,Mengtong Gong,Yue Song,Limei Tian
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (17): 18978-18989 被引量:23
标识
DOI:10.1109/jsen.2021.3086677
摘要

Remaining useful life (RUL) prediction of rolling bearings brings benefits for maintenance of spacecrafts. Vibration signals are widely used for RUL prediction. However, under some situations such as high-speed rotation of bearings, vibration signals are quite easily disturbed by noise and might be tough to collect due to inappropriate installation of accelerometers. Therefore, in this paper, stator current signals are considered as health indicator for bearing RUL prediction. Based on stator current signals, feature extraction and trajectory tracking of signals suffer two challenges: 1) degradation tracking of downlinked stator current data is restricted due to low-frequency downlink from spacecrafts to stations; 2) the accuracy of health state estimation is constrained by artificial feature selection and prior knowledge about bearings. To overcome these issues, a novel RUL prediction approach is proposed in this work. An adaptive feature selection strategy based on autoregression model and backpropagation neural network is applied. Finally, an improved RUL prediction framework is introduced under down-sampled signals, which combines compressed sensing and deep learning model. A case from Paderborn university and a case from life test of bearing on control moment gyro were investigated. Experimental results support the validity of proposed approach in terms of lower prediction error than related works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu发布了新的文献求助10
刚刚
Run发布了新的文献求助10
1秒前
wuqq完成签到,获得积分10
1秒前
冷酷愚志完成签到,获得积分10
4秒前
4秒前
hhh完成签到 ,获得积分10
5秒前
6秒前
李健应助玻尿酸采纳,获得10
10秒前
tiger发布了新的文献求助10
11秒前
赘婿应助罗鑫圣采纳,获得10
12秒前
科研通AI5应助腼腆的初兰采纳,获得10
13秒前
斯文败类应助Ss采纳,获得10
16秒前
16秒前
18秒前
今天不加班完成签到,获得积分10
20秒前
20秒前
asdf完成签到,获得积分10
21秒前
hgyudetaaE发布了新的文献求助10
21秒前
77发布了新的文献求助10
23秒前
tiger完成签到,获得积分10
23秒前
Alex应助青藤采纳,获得20
24秒前
科研通AI2S应助nenoaowu采纳,获得10
26秒前
asdfks完成签到,获得积分20
26秒前
26秒前
34秒前
MchemG应助碗碗采纳,获得10
35秒前
37秒前
热情的寄瑶完成签到 ,获得积分10
38秒前
40秒前
玻尿酸发布了新的文献求助10
40秒前
简单的皮皮虾完成签到 ,获得积分10
43秒前
wangwenzhe发布了新的文献求助10
44秒前
chloe777完成签到,获得积分10
44秒前
45秒前
结实凌瑶完成签到 ,获得积分10
45秒前
ZHH完成签到,获得积分10
46秒前
852应助温良采纳,获得10
47秒前
Akim应助北媛采纳,获得10
47秒前
47秒前
几秋发布了新的文献求助10
47秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787983
求助须知:如何正确求助?哪些是违规求助? 3333553
关于积分的说明 10262434
捐赠科研通 3049355
什么是DOI,文献DOI怎么找? 1673516
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760475