Latent class analysis of depression and anxiety among medical students during COVID-19 epidemic

潜在类模型 焦虑 心理健康 萧条(经济学) 多项式logistic回归 精神科 病人健康调查表 医学 临床心理学 逻辑回归 心理学 内科学 机器学习 抑郁症状 经济 宏观经济学 统计 计算机科学 数学
作者
Zhuang Liu,Rongxun Liu,Yue Zhang,Ran Zhang,Lijuan Liang,Yang Wang,Yange Wei,Rongxin Zhu,Fei Wang
出处
期刊:BMC Psychiatry [BioMed Central]
卷期号:21 (1) 被引量:33
标识
DOI:10.1186/s12888-021-03459-w
摘要

Abstract Objective The novel coronavirus disease 2019 (COVID-19) is a global public health emergency that has caused worldwide concern. The mental health of medical students under the COVID-19 epidemic has attracted much attention. This study aims to identify subgroups of medical students based on depression and anxiety and explore the influencing factors during the COVID-19 epidemic in China. Methods A total of 29,663 medical students were recruited during the epidemic of COVID-19 in China. Depression and anxiety symptoms were assessed using Patient Health Questionnaire 9 (PHQ9) and Generalized Anxiety Disorder 7 (GAD7) respectively. Latent class analysis was performed based on depression and anxiety symptoms in medical students. The latent class subtypes were compared using the chi-square test. Multinomial logistic regression was used to examine associations between identified classes and related factors. Results In this study, three distinct subgroups were identified, namely, the poor mental health group, the mild mental health group and the low symptoms group. The number of medical students in each class is 4325, 9321 and 16,017 respectively. The multinomial logistic regression results showed that compared with the low symptoms group, the factors influencing depression and anxiety in the poor mental health group and mild mental health group were sex, educational level, drinking, individual psychiatric disorders, family psychiatric disorders, knowledge of COVID-19, fear of being infected, and participate in mental health education on COVID-19. Conclusions Our findings suggested that latent class analysis can be used to categorize different medical students according to their depression and anxiety symptoms during the outbreak of COVID-19. The main factors influencing the poor mental health group and the mild mental health group are basic demographic characteristics, disease history, COVID-19 related factors and behavioural lifestyle. School administrative departments can carry out targeted psychological counseling according to different subgroups to promote the physical and mental health of medical students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月半发布了新的文献求助10
1秒前
1秒前
李桐桐发布了新的文献求助10
2秒前
2秒前
烟花应助陈宇豪采纳,获得10
3秒前
3秒前
3秒前
爆米花应助甜甜秋荷采纳,获得10
3秒前
Jasper应助自由寄柔采纳,获得10
3秒前
哈哈完成签到 ,获得积分10
4秒前
4秒前
科研通AI6应助失眠台灯采纳,获得10
4秒前
5秒前
大模型应助LJH采纳,获得10
5秒前
5秒前
赘婿应助等待哲瀚采纳,获得10
6秒前
6秒前
6秒前
David发布了新的文献求助30
6秒前
6秒前
6秒前
如意完成签到,获得积分10
7秒前
尘默完成签到,获得积分10
7秒前
Hello应助陶毅采纳,获得10
7秒前
科研通AI6应助结实的秋天采纳,获得10
7秒前
小鲤鱼吃大菠萝完成签到,获得积分10
8秒前
8秒前
8秒前
msuyue发布了新的文献求助10
8秒前
Summer肖发布了新的文献求助10
8秒前
8秒前
星辰大海应助StarWalkin8采纳,获得10
9秒前
HZW发布了新的文献求助10
9秒前
淡淡冰淇淋完成签到,获得积分10
9秒前
10秒前
Iris发布了新的文献求助10
10秒前
10秒前
陈云凤发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261911
求助须知:如何正确求助?哪些是违规求助? 4423050
关于积分的说明 13768354
捐赠科研通 4297554
什么是DOI,文献DOI怎么找? 2358051
邀请新用户注册赠送积分活动 1354404
关于科研通互助平台的介绍 1315457