Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery

稳健性(进化) 工作流程 计算机科学 机器学习 人工智能 钥匙(锁) 密度泛函理论 化学 计算化学 计算机安全 生物化学 数据库 基因
作者
Chenru Duan,Fang Liu,Aditya Nandy,Heather J. Kulik
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:12 (19): 4628-4637 被引量:44
标识
DOI:10.1021/acs.jpclett.1c00631
摘要

Accelerated discovery with machine learning (ML) has begun to provide the advances in efficiency needed to overcome the combinatorial challenge of computational materials design. Nevertheless, ML-accelerated discovery both inherits the biases of training data derived from density functional theory (DFT) and leads to many attempted calculations that are doomed to fail. Many compelling functional materials and catalytic processes involve strained chemical bonds, open-shell radicals and diradicals, or metal-organic bonds to open-shell transition-metal centers. Although promising targets, these materials present unique challenges for electronic structure methods and combinatorial challenges for their discovery. In this Perspective, we describe the advances needed in accuracy, efficiency, and approach beyond what is typical in conventional DFT-based ML workflows. These challenges have begun to be addressed through ML models trained to predict the results of multiple methods or the differences between them, enabling quantitative sensitivity analysis. For DFT to be trusted for a given data point in a high-throughput screen, it must pass a series of tests. ML models that predict the likelihood of calculation success and detect the presence of strong correlation will enable rapid diagnoses and adaptation strategies. These "decision engines" represent the first steps toward autonomous workflows that avoid the need for expert determination of the robustness of DFT-based materials discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞科研的崔桑完成签到,获得积分10
1秒前
2秒前
2秒前
一一发布了新的文献求助10
3秒前
科研通AI5应助橘子味的风采纳,获得10
5秒前
啵啵洋发布了新的文献求助10
6秒前
6秒前
精明外套完成签到,获得积分10
7秒前
鱼鱼鱼发布了新的文献求助10
8秒前
9秒前
9秒前
亦舒发布了新的文献求助10
10秒前
Sunshine完成签到,获得积分10
10秒前
缥缈的丹翠关注了科研通微信公众号
11秒前
科研通AI5应助大恩区采纳,获得10
11秒前
12秒前
Owen应助WWW采纳,获得10
13秒前
大小宇完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
风起完成签到,获得积分10
14秒前
14秒前
14秒前
赘婿应助莫比乌斯采纳,获得10
14秒前
Akim应助萧衍采纳,获得10
15秒前
15秒前
yuiii完成签到,获得积分10
15秒前
16秒前
16秒前
华仔应助MXX采纳,获得10
18秒前
风起发布了新的文献求助10
18秒前
搞怪冷风发布了新的文献求助10
18秒前
小小铱发布了新的文献求助10
18秒前
19秒前
19秒前
changye发布了新的文献求助10
19秒前
20秒前
Daisy发布了新的文献求助10
21秒前
一二发布了新的文献求助10
21秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462