TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios

计算机科学 人工智能 可解释性 无人机 分类器(UML) 对象(语法) 目标检测 机器学习 变压器 模式识别(心理学) 工程类 遗传学 生物 电气工程 电压
作者
Xingkui Zhu,Shuchang Lyu,Xu Wang,Qi Zhao
出处
期刊:International Conference on Computer Vision 卷期号:: 2778-2788 被引量:1480
标识
DOI:10.1109/iccvw54120.2021.00312
摘要

Object detection on drone-captured scenarios is a recent popular task. As drones always navigate in different altitudes, the object scale varies violently, which burdens the optimization of networks. Moreover, high-speed and low-altitude flight bring in the motion blur on the densely packed objects, which leads to great challenge of object distinction. To solve the two issues mentioned above, we propose TPH-YOLOv5. Based on YOLOv5, we add one more prediction head to detect different-scale objects. Then we replace the original prediction heads with Transformer Prediction Heads (TPH) to explore the prediction potential with self-attention mechanism. We also integrate convolutional block attention model (CBAM) to find attention region on scenarios with dense objects. To achieve more improvement of our proposed TPH-YOLOv5, we provide bags of useful strategies such as data augmentation, multi-scale testing, multi-model integration and utilizing extra classifier. Extensive experiments on dataset VisDrone2021 show that TPH-YOLOv5 have good performance with impressive interpretability on drone-captured scenarios. On DET-test-challenge dataset, the AP result of TPH-YOLOv5 are 39.18%, which is better than previous SOTA method (DPNetV3) by 1.81%. On VisDrone Challenge 2021, TPH-YOLOv5 wins 5 th place and achieves well-matched results with 1 st place model (AP 39.43%). Compared to baseline model (YOLOv5), TPH-YOLOv5 improves about 7%, which is encouraging and competitive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔垣结衣应助nbnbaaa采纳,获得10
1秒前
justdoit完成签到,获得积分10
1秒前
shuang发布了新的文献求助10
1秒前
大模型应助柠檬草采纳,获得10
1秒前
健忘的飞雪完成签到,获得积分10
2秒前
3秒前
顾矜应助承乐采纳,获得10
3秒前
lin发布了新的文献求助10
3秒前
星辰大海应助yx采纳,获得10
3秒前
Hello应助清风浮云采纳,获得30
5秒前
Emma应助胖虎采纳,获得10
5秒前
LI电池完成签到,获得积分10
5秒前
超帅蓝血完成签到 ,获得积分10
5秒前
bobo完成签到,获得积分10
5秒前
尊敬蛋挞发布了新的文献求助10
6秒前
杰克发布了新的文献求助10
6秒前
sunsun发布了新的文献求助10
6秒前
6秒前
爆米花应助pbj采纳,获得10
6秒前
清风发布了新的文献求助10
6秒前
8秒前
lingmuhuahua完成签到,获得积分10
8秒前
科研渣渣完成签到,获得积分10
8秒前
8秒前
852应助不学无术采纳,获得10
8秒前
8秒前
L1Young完成签到,获得积分20
8秒前
充电宝应助Kristy采纳,获得10
8秒前
orixero应助星落枝头采纳,获得10
8秒前
mengwensi发布了新的文献求助10
8秒前
9秒前
小小完成签到 ,获得积分10
9秒前
yourself发布了新的文献求助10
10秒前
阔达的萤完成签到,获得积分10
11秒前
11秒前
曾经的盈发布了新的文献求助10
12秒前
Dr_Shi完成签到,获得积分10
12秒前
sdniuidifod发布了新的文献求助10
12秒前
可靠板栗完成签到,获得积分10
12秒前
今天想好吃啥了吗完成签到,获得积分10
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063856
求助须知:如何正确求助?哪些是违规求助? 3602290
关于积分的说明 11440705
捐赠科研通 3325417
什么是DOI,文献DOI怎么找? 1828098
邀请新用户注册赠送积分活动 898566
科研通“疑难数据库(出版商)”最低求助积分说明 819103