New Model for Estimation of the Age at Onset in Spinocerebellar Ataxia Type 3

脊髓小脑共济失调 阿卡克信息准则 统计 马查多-约瑟夫病 逻辑回归 数学 生存分析 医学 贝叶斯信息准则 比例危险模型 内科学 疾病
作者
Linliu Peng,Zhao Chen,Zhe Long,Mingjie Liu,Lijing Lei,Chunrong Wang,Huirong Peng,Yuting Shi,Yun Peng,Qi Deng,Shang Wang,Guangdong Zou,Linlin Wan,Hongyu Yuan,Lang He,Yue Xie,Zhichao Tang,Na Wan,Yiqing Gong,Xuan Hou
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:96 (23) 被引量:13
标识
DOI:10.1212/wnl.0000000000012068
摘要

The aim of this study was to develop an appropriate parametric survival model to predict patient's age at onset (AAO) for spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) populations from mainland China.We compared the efficiency and performance of 6 parametric survival analysis methods (exponential, weibull, log-gaussian, gaussian, log-logistic, and logistic) based on cytosine-adenine-guanine (CAG) repeat length at ATXN3 to predict the probability of AAO in the largest cohort of patients with SCA3/MJD. A set of evaluation criteria, including -2 log-likelihood statistic, Akaike information criterion (AIC), bayesian information criterion (BIC), Nagelkerke R-squared (Nagelkerke R^2), and Cox-Snell residual plot, were used to identify the best model.Among these 6 parametric survival models, the logistic model had the lowest -2 log-likelihood (6,560.12), AIC (6,566.12), and BIC (6,566.14) and the highest value of Nagelkerke R^2 (0.54), with the closest graph to the bisector Cox-Snell residual graph. Therefore, the logistic survival model was the best fit to the studied data. Using the optimal logistic survival model, we indicated the age-specific probability distribution of AAO according to the CAG repeat size and current age.We first demonstrated that the logistic survival model provided the best fit for AAO prediction in patients with SCA3/MJD from mainland China. This optimal model can be valuable in clinical and research. However, the rigorous clinical testing and practice of other independent cohorts are needed for its clinical application. A unified model across multiethnic cohorts is worth further exploration by identifying regional differences and significant modifiers in AAO determination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
太微应助muxiangrong采纳,获得50
1秒前
冰魂应助安静的睿渊采纳,获得10
5秒前
Lucas应助iaskwho采纳,获得10
5秒前
万能图书馆应助北栀采纳,获得10
7秒前
先锋完成签到 ,获得积分10
7秒前
好好发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
机智的著发布了新的文献求助10
11秒前
风涯完成签到,获得积分10
11秒前
李健的小迷弟应助贝勒采纳,获得10
12秒前
思源应助狂野世立采纳,获得10
12秒前
13秒前
wys完成签到 ,获得积分10
13秒前
禅花游鱼发布了新的文献求助10
14秒前
好好完成签到,获得积分20
15秒前
16秒前
frank完成签到,获得积分10
17秒前
fandada发布了新的文献求助10
17秒前
zmd完成签到 ,获得积分10
20秒前
科研01应助禅花游鱼采纳,获得10
22秒前
在水一方应助狂野世立采纳,获得10
23秒前
supermark123应助文件撤销了驳回
23秒前
邺忱发布了新的文献求助10
25秒前
may完成签到,获得积分10
25秒前
城南发布了新的文献求助10
28秒前
乐乐乐乐乐乐应助llig采纳,获得50
28秒前
冰魂应助机智的著采纳,获得10
29秒前
Jessie完成签到,获得积分10
30秒前
852应助zouxiang采纳,获得10
30秒前
mendicant完成签到,获得积分10
30秒前
科研通AI5应助胖虎采纳,获得10
30秒前
31秒前
爆米花应助狂野世立采纳,获得10
32秒前
科研通AI5应助善良的背包采纳,获得10
32秒前
tuzki完成签到,获得积分10
33秒前
34秒前
健健康康发布了新的文献求助30
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307