清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes

超滤(肾) 纳滤 纳米复合材料 结垢 聚合膜 材料科学 微滤 工艺工程 化学工程 计算机科学 聚合物 色谱法 复合材料 工程类 化学 生物化学
作者
Masoud Fetanat,Mohammadali Keshtiara,Ze‐Xian Low,Ramazan Keyikoğlu,Alireza Khataee,Yasin Orooji,Vicki Chen,Leslie Gregory,Amir Razmjou
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (14): 5236-5250 被引量:55
标识
DOI:10.1021/acs.iecr.0c05446
摘要

Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷雁卉完成签到,获得积分10
24秒前
薛家泰完成签到 ,获得积分10
53秒前
juliar完成签到 ,获得积分10
54秒前
DrMaghrabi完成签到,获得积分10
1分钟前
CC完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
小新小新完成签到 ,获得积分10
2分钟前
鞘皮完成签到,获得积分10
2分钟前
LINDENG2004完成签到 ,获得积分10
2分钟前
推土机爱学习完成签到 ,获得积分10
2分钟前
lorentzh完成签到,获得积分10
3分钟前
跳跃的鹏飞完成签到 ,获得积分10
3分钟前
Raul完成签到 ,获得积分10
3分钟前
3分钟前
widesky777完成签到 ,获得积分10
3分钟前
房天川完成签到 ,获得积分10
3分钟前
3分钟前
稻子完成签到 ,获得积分10
4分钟前
文静灵阳完成签到 ,获得积分10
4分钟前
4分钟前
gwp1223发布了新的文献求助10
5分钟前
5分钟前
jlwang完成签到,获得积分10
6分钟前
herpes完成签到 ,获得积分10
6分钟前
脑洞疼应助小婷君采纳,获得10
6分钟前
蛋卷完成签到 ,获得积分10
6分钟前
TZMY完成签到,获得积分10
6分钟前
6分钟前
王白山完成签到,获得积分20
6分钟前
童大大发布了新的文献求助10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
麻花阳完成签到,获得积分10
7分钟前
路路完成签到 ,获得积分10
7分钟前
8分钟前
小婷君发布了新的文献求助10
8分钟前
8分钟前
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3937852
求助须知:如何正确求助?哪些是违规求助? 3483296
关于积分的说明 11022748
捐赠科研通 3213285
什么是DOI,文献DOI怎么找? 1776113
邀请新用户注册赠送积分活动 862324
科研通“疑难数据库(出版商)”最低求助积分说明 798429