Advances in CD-CAT: The General Nonparametric Item Selection Method

非参数统计 参数统计 估计员 选择(遗传算法) 计算机科学 计算机化自适应测验 校准 机器学习 人工智能 数据挖掘 统计 数学 心理测量学
作者
Chia‐Yi Chiu,Yuan-Pei Chang
出处
期刊:Psychometrika [Springer Nature]
卷期号:86 (4): 1039-1057 被引量:15
标识
DOI:10.1007/s11336-021-09792-z
摘要

Computerized adaptive testing (CAT) is characterized by its high estimation efficiency and accuracy, in contrast to the traditional paper-and-pencil format. CAT specifically for cognitive diagnosis (CD-CAT) carries the same advantages and has been seen as a tool for advancing the use of cognitive diagnosis (CD) assessment for educational practice. A powerful item selection method is the key to the success of a CD-CAT program, and to date, various parametric item selection methods have been proposed and well-researched. However, these parametric methods all require large samples, to secure high-precision calibration of the items in the item bank. Thus, at present, implementation of parametric methods in small-scale educational settings, such as classroom, remains challenging. In response to this issue, Chang, Chiu, and Tsai (Appl Psychol Meas 43:543–561, 2019) proposed the nonparametric item selection (NPS) method that does not require parameter calibration and outperforms the parametric methods for settings with only small or no calibration samples. Nevertheless, the NPS method is not without limitations; extra assumptions are required to guarantee a consistent estimator of the attribute profiles when data conform to complex models. To remedy this shortcoming, the general nonparametric item selection (GNPS) method that incorporates the newly developed general NPC (GNPC) method (Chiu et al. in Psychometrika 83:355–375, 2018) as the classification vehicle is proposed in this study. The inclusion of the GNPC method in the GNPS method relaxes the assumptions imposed on the NPS method. As a result, the GNPS method can be used with any model or multiple models without abandoning the advantage of being a small-sample technique. The legitimacy of using the GNPS method in the CD-CAT system is supported by Theorem 1 proposed in the study. The efficiency and effectiveness of the GNPS method are confirmed by the simulation study that shows the outperformance of the GNPS method over the compared parametric methods when the calibration samples are small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关关过应助补药学习采纳,获得10
刚刚
小马甲应助机灵的胡萝卜采纳,获得10
刚刚
月白完成签到,获得积分10
刚刚
1秒前
在水一方应助Alex采纳,获得10
1秒前
酷波er应助小Z采纳,获得10
2秒前
3秒前
tleeny发布了新的文献求助10
3秒前
英俊的铭应助林白采纳,获得10
4秒前
4秒前
5秒前
5秒前
7秒前
7秒前
嘴角微微仰起笑应助yz采纳,获得10
7秒前
纯真丹萱发布了新的文献求助10
8秒前
8秒前
8秒前
欧泡果奶完成签到,获得积分10
9秒前
SciGPT应助yu采纳,获得30
9秒前
9秒前
坚强的日记本完成签到 ,获得积分10
10秒前
所所应助好嘞采纳,获得10
10秒前
根根发布了新的文献求助10
10秒前
SCL987654321完成签到,获得积分10
10秒前
科目三应助fengge采纳,获得10
10秒前
11秒前
zq发布了新的文献求助10
11秒前
科研通AI6应助Tony12采纳,获得10
12秒前
完美世界应助zwj采纳,获得30
12秒前
小鹏发布了新的文献求助10
13秒前
yinx发布了新的文献求助10
13秒前
英姑应助於访琴采纳,获得10
13秒前
hhhhh发布了新的文献求助30
13秒前
Wanan完成签到,获得积分10
13秒前
汪姝发布了新的文献求助30
14秒前
Regulus完成签到,获得积分10
14秒前
科研小狗发布了新的文献求助10
14秒前
古木发布了新的文献求助20
14秒前
钙离子发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537391
求助须知:如何正确求助?哪些是违规求助? 4624923
关于积分的说明 14593864
捐赠科研通 4565456
什么是DOI,文献DOI怎么找? 2502376
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452191