Modeling soil temperature using air temperature features in diverse climatic conditions with complementary machine learning models

空气温度 机器学习 预测建模 人工智能 人工神经网络 计算机科学 航程(航空) 气候变化 环境科学 气象学 工程类 地理 地质学 海洋学 航空航天工程
作者
Maryam Bayatvarkeshi,Suraj Kumar Bhagat,Kourosh Mohammadi,Özgür Kişi,Mohsen Farahani,Arman Hasani,Ravinesh C. Deo,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:185: 106158-106158 被引量:21
标识
DOI:10.1016/j.compag.2021.106158
摘要

Soil temperature (ST) is an essential catchment property strongly influenced by air temperature (Ta). ST is also the key factor in sustainable agricultural developments, so researchers are still motivated to develop robust machine learning (ML) models to predict ST more reliably. Four different ML models, utilizing the standalone algorithms (i.e., artificial neural networks: ‘ANN’ and co-active neuro-fuzzy inference systems: ‘CANFIS’) and complementary algorithms (i.e., wavelet transformation combined with ANN: ‘WANN’ and wavelet transformation combined with CANFIS: ‘WCANFIS’) were developed to predict the ST at six meteorological stations incorporating a wide range of climatic features to improve the overall performance. The study has utilized data over the period 2000–2010, collected at 12 locations in Iran. In the first phase of this research, the effects of climate variability on the changes in ST at different depths (i.e., 5, 10, 20, 30, 50 and 100 cm) were explored using air temperature as the exploratory and ST as the response variable. Assessing the performance of the predictive models used in ST prediction, the results indicated good predictive capability of the WCANFIS model, thus, advocating its potential utility in ST prediction problems, especially over diverse climatic regions. This study has also ascertained that the minimum and the maximum predictive errors were encountered at a depth of about 20 cm and 100 cm, respectively. The assessment of climatic features based on air temperature datasets on the performance of the models indicated the highest efficacy demonstrated by the ANN model for the case A–C–W climate type (i.e., a moist climate regime: Arid, temperature regime in winter: Cool, and temperature regime in summer: Warm), in comparison with the PH–C–W climate type (moist regime: Per-humid) for the other best ML models (i.e., WANN, WCANFIS and CANFIS). The order of the model accuracies based on the root mean square error (RMSE) can be ranked with error values of as: WCANFIS = 0.43 °C, ANN = 0.69 °C, CANFIS = 2.16 °C and WANN = 2.31 °C, demonstrating the wavelet-based CANFIS model to exceed the performance of the counterpart comparative models. The present study provides evidence of successfully developing new ML models, improved through wavelet transform for effective feature extraction, and the importance of such hybrid models that have practical implications in studying soil temperature based on air temperature feature inputs in diverse climatic conditions. The outcomes of this study are expected to support key decisions in sustainable agriculture and other related areas where soil health, based on air temperature changes, needs to be monitored or predicted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助vvv采纳,获得10
6秒前
13秒前
14秒前
传统的孤丝完成签到 ,获得积分10
14秒前
sen123完成签到,获得积分10
16秒前
16秒前
Kate发布了新的文献求助10
18秒前
安详怀蕾发布了新的文献求助10
19秒前
19秒前
SciGPT应助123采纳,获得10
19秒前
上官若男应助七七采纳,获得10
19秒前
烟花应助调皮的蓝天采纳,获得10
20秒前
aaa完成签到 ,获得积分10
22秒前
Lee完成签到,获得积分10
23秒前
24秒前
vvv发布了新的文献求助10
26秒前
26秒前
科研通AI5应助安详怀蕾采纳,获得10
27秒前
小杨爱吃羊完成签到 ,获得积分10
28秒前
28秒前
晴语发布了新的文献求助10
29秒前
volcano完成签到 ,获得积分10
29秒前
happiness完成签到 ,获得积分10
30秒前
霸气凡白发布了新的文献求助10
30秒前
今后应助panbaobao采纳,获得10
33秒前
研友_VZG7GZ应助落日晚归舟采纳,获得10
33秒前
七七发布了新的文献求助10
33秒前
DAN_完成签到,获得积分10
34秒前
葶苈子完成签到 ,获得积分10
35秒前
FashionBoy应助PLAGH221采纳,获得10
37秒前
嘻嘻叮完成签到,获得积分10
37秒前
零度完成签到 ,获得积分10
37秒前
今后应助留胡子的霖采纳,获得10
41秒前
Henry完成签到,获得积分10
47秒前
ding应助vvv采纳,获得10
48秒前
48秒前
jxm完成签到 ,获得积分10
52秒前
53秒前
口爱DI乔巴完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552