已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Controlling potential difference between electrodes based on self-consistent-charge density functional tight binding

密度泛函理论 电极 电解质 电极电位 电化学 化学 化学物理 标准电极电位 电位 电化学电位 电荷密度 势能 材料科学 分子物理学 计算化学 原子物理学 电压 物理化学 量子力学 物理
作者
Jun Oshiki,Hiroshi Nakano,Hirofumi Sato
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:154 (14) 被引量:8
标识
DOI:10.1063/5.0047992
摘要

A proper understanding and description of the electronic response of the electrode surfaces in electrochemical systems are quite important because the interactions between the electrode surface and electrolyte give rise to unique and useful interfacial properties. Atomistic modeling of the electrodes requires not only an accurate description of the electronic response under a constant-potential condition but also computational efficiency in order to deal with systems large enough to investigate the interfacial electrolyte structures. We thus develop a self-consistent-charge density functional tight binding based method to model a pair of electrodes in electrochemical cells under the constant-potential condition. The method is more efficient than the (ab initio) density functional theory calculations so that it can treat systems as large as those studied in classical atomistic simulations. It can also describe the electronic response of electrodes quantum mechanically and more accurately than the classical counterparts. The constant-potential condition is introduced through a Legendre transformation of the electronic energy with respect to the difference in the number of electrons in the two electrodes and their electrochemical potential difference, through which the Kohn–Sham equations for each electrode are variationally derived. The method is applied to platinum electrodes faced parallel to each other under an applied voltage. The electronic response to the voltage and a charged particle is compared with the result of a classical constant-potential method based on the chemical potential equalization principle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛某发布了新的文献求助10
2秒前
WaitP应助无奈的小松鼠采纳,获得10
3秒前
汉堡包应助无奈的小松鼠采纳,获得10
3秒前
乐乐应助无奈的小松鼠采纳,获得10
3秒前
852应助无奈的小松鼠采纳,获得10
3秒前
酷波er应助无奈的小松鼠采纳,获得10
3秒前
ding应助无奈的小松鼠采纳,获得10
3秒前
3秒前
英姑应助无奈的小松鼠采纳,获得10
3秒前
4秒前
4秒前
bkagyin应助今日店休采纳,获得10
5秒前
6秒前
Jessie完成签到,获得积分10
7秒前
小柚子完成签到 ,获得积分10
8秒前
Vv发布了新的文献求助10
9秒前
10秒前
橙汁发布了新的文献求助10
10秒前
Ava应助jugan采纳,获得10
11秒前
Jessie发布了新的文献求助10
11秒前
今日店休发布了新的文献求助10
15秒前
Vv完成签到,获得积分20
15秒前
15秒前
16秒前
ccmxigua完成签到,获得积分10
17秒前
18秒前
20秒前
20秒前
WaitP应助火星上亦绿采纳,获得10
21秒前
余健发布了新的文献求助10
22秒前
阔达的水壶完成签到 ,获得积分10
22秒前
肖兔子哇完成签到 ,获得积分10
23秒前
romeo完成签到,获得积分10
23秒前
核桃发布了新的文献求助10
24秒前
keeper王发布了新的文献求助10
24秒前
迷路的书南应助ccmxigua采纳,获得10
24秒前
0000完成签到 ,获得积分10
24秒前
24秒前
27秒前
搜集达人应助大马哈鱼采纳,获得10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343727
关于积分的说明 10317463
捐赠科研通 3060505
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295