Learning From Images: A Distillation Learning Framework for Event Cameras

计算机科学 人工智能 稳健性(进化) 特征提取 判别式 事件(粒子物理) 计算机视觉 机器学习 模式识别(心理学) 光流 边距(机器学习) 特征(语言学) 图像(数学) 量子力学 生物化学 基因 物理 哲学 语言学 化学
作者
Yongjian Deng,Hao Chen,Huiying Chen,Youfu Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 4919-4931 被引量:28
标识
DOI:10.1109/tip.2021.3077136
摘要

Event cameras have recently drawn massive attention in the computer vision community because of their low power consumption and high response speed. These cameras produce sparse and non-uniform spatiotemporal representations of a scene. These characteristics of representations make it difficult for event-based models to extract discriminative cues (such as textures and geometric relationships). Consequently, event-based methods usually perform poorly compared to their conventional image counterparts. Considering that traditional images and event signals share considerable visual information, this paper aims to improve the feature extraction ability of event-based models by using knowledge distilled from the image domain to additionally provide explicit feature-level supervision for the learning of event data. Specifically, we propose a simple yet effective distillation learning framework, including multi-level customized knowledge distillation constraints. Our framework can significantly boost the feature extraction process for event data and is applicable to various downstream tasks. We evaluate our framework on high-level and low-level tasks, i.e., object classification and optical flow prediction. Experimental results show that our framework can effectively improve the performance of event-based models on both tasks by a large margin. Furthermore, we present a 10K dataset (CEP-DVS) for event-based object classification. This dataset consists of samples recorded under random motion trajectories that can better evaluate the motion robustness of the event-based model and is compatible with multi-modality vision tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李发布了新的文献求助10
1秒前
2秒前
科研通AI6.1应助mie采纳,获得30
2秒前
研友_VZG7GZ应助五i采纳,获得10
2秒前
Spinnin完成签到,获得积分10
3秒前
3秒前
科学发布了新的文献求助10
3秒前
goofs完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
Ezio_sunhao完成签到,获得积分10
4秒前
xdedd完成签到,获得积分10
5秒前
Mercury完成签到,获得积分10
6秒前
鄂海菡完成签到,获得积分0
6秒前
酷波er应助轻松书竹采纳,获得10
7秒前
傲娇向露完成签到,获得积分20
7秒前
7秒前
雁夜完成签到,获得积分10
8秒前
思源应助沉默的幻枫采纳,获得10
8秒前
Alpes完成签到,获得积分10
9秒前
yangtuotuotuopoi应助ll采纳,获得10
9秒前
10秒前
科研通AI6.1应助szx采纳,获得10
11秒前
11秒前
12秒前
少夫人发布了新的文献求助10
12秒前
Alpes发布了新的文献求助10
13秒前
13秒前
雪白飞槐发布了新的文献求助10
16秒前
桐桐应助单薄遥采纳,获得10
17秒前
17秒前
桔心发布了新的文献求助10
17秒前
En关闭了En文献求助
18秒前
123456冬瓜发布了新的文献求助10
18秒前
ataybabdallah发布了新的文献求助30
18秒前
Orange应助读书的时候采纳,获得10
19秒前
20秒前
周梦蝶完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737686
求助须知:如何正确求助?哪些是违规求助? 5373939
关于积分的说明 15336077
捐赠科研通 4881050
什么是DOI,文献DOI怎么找? 2623314
邀请新用户注册赠送积分活动 1572041
关于科研通互助平台的介绍 1528887