fNIRS-based brain-computer interfaces: a review

脑-机接口 计算机科学 运动表象 功能近红外光谱 人工智能 特征提取 前额叶皮质 支持向量机 线性判别分析 语音识别 模式识别(心理学) 脑电图 认知 心理学 神经科学
作者
Noman Naseer,Keum‐Shik Hong
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media SA]
卷期号:9: 3-3 被引量:939
标识
DOI:10.3389/fnhum.2015.00003
摘要

A brain-computer interface (BCI) is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis (ICA), multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine (SVM), hidden Markov model (HMM), artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玩泥巴的hh完成签到,获得积分10
1秒前
zmm完成签到,获得积分10
2秒前
荔枝树13发布了新的文献求助10
2秒前
Yet_S完成签到,获得积分10
3秒前
3秒前
cm515531发布了新的文献求助10
4秒前
第二支羽毛完成签到,获得积分10
4秒前
wsh完成签到,获得积分20
4秒前
4秒前
尊敬浩宇完成签到,获得积分10
5秒前
5秒前
陈阳发布了新的文献求助10
5秒前
鱼加面大盘鸡完成签到,获得积分20
7秒前
思源应助沙糖桔采纳,获得10
7秒前
Mint发布了新的文献求助10
8秒前
8秒前
8秒前
专注不言关注了科研通微信公众号
9秒前
懵懂的寻冬应助wsh采纳,获得10
10秒前
GarrickO应助zhuhaot采纳,获得50
10秒前
phoenix发布了新的文献求助10
11秒前
荷月初六发布了新的文献求助20
12秒前
科研通AI6应助Hilda007采纳,获得10
13秒前
图南发布了新的文献求助30
14秒前
ttt完成签到,获得积分10
14秒前
14秒前
小不正经完成签到 ,获得积分10
14秒前
cm515531完成签到,获得积分10
14秒前
xz发布了新的文献求助10
15秒前
16秒前
聪明蛋挞应助子欲采纳,获得10
17秒前
完美世界应助我不爱池鱼采纳,获得30
18秒前
CodeCraft应助52251013106采纳,获得20
18秒前
A9W01U发布了新的文献求助30
18秒前
shhoing应助陈阳采纳,获得10
18秒前
臧臧发布了新的文献求助30
18秒前
19秒前
19秒前
19秒前
胡房晓发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355030
求助须知:如何正确求助?哪些是违规求助? 4487003
关于积分的说明 13968627
捐赠科研通 4387720
什么是DOI,文献DOI怎么找? 2410516
邀请新用户注册赠送积分活动 1403004
关于科研通互助平台的介绍 1376720