多集
典型相关
数学
稳健性(进化)
希尔伯特空间
非线性系统
模式识别(心理学)
冗余(工程)
核希尔伯特再生空间
核(代数)
算法
人工智能
特征向量
相关性
计算机科学
离散数学
纯数学
几何学
基因
操作系统
物理
量子力学
生物化学
化学
作者
Yunhao Yuan,Xiaobo Shen,Yun Li,Bin Li,Jianping Gou,Jipeng Qiang,Xinfeng Zhang,Quansen Sun
摘要
Summary In this paper, we propose a composite nonlinear multiset canonical correlation projections (CNMCPs) framework where orthogonal constraints are imposed in each set. This makes CNMCP capable of learning uncorrelated low‐dimensional features with minimum redundancy in Hilbert space. With the CNMCP framework, we further present a particular algorithm called multikernel multiset canonical correlations or mKMCC, which introduces different weights into multiple nonlinear functions in all views. An alternating iterative optimization is designed for computational solution. Numerous experimental results on practical datasets have demonstrated the effectiveness and robustness of mKMCC, in contrast with existing kernel correlation learning approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI