Validation of an oncology‐specific opioid risk calculator in cancer survivors

医学 队列 类阿片 癌症 队列研究 内科学 接收机工作特性 肿瘤科 受体
作者
Paul Riviere,Lucas K. Vitzthum,Vinit Nalawade,Rishi Deka,Timothy Furnish,Loren K. Mell,Brent S. Rose,Mark S. Wallace,James D. Murphy
出处
期刊:Cancer [Wiley]
卷期号:127 (9): 1529-1535 被引量:1
标识
DOI:10.1002/cncr.33410
摘要

Background Clinical guidelines recommend that providers risk‐stratify patients with cancer before prescribing opioids. Prior research has demonstrated that a simple cancer opioid risk score might help identify to patients with cancer at the time of diagnosis with a high likelihood of long‐term posttreatment opioid use. This current project validates this cancer opioid risk score in a generalizable, population‐based cohort of elderly cancer survivors. Methods This study identified 44,932 Medicare beneficiaries with cancer who had received local therapy. Longitudinal opioid use was ascertained from Medicare Part D data. A risk score was calculated for each patient, and patients were categorized into low‐, moderate‐, and high‐risk groups on the basis of the predicted probability of persistent opioid use. Model discrimination was assessed with receiver operating characteristic curves. Results In the study cohort, 5.2% of the patients were chronic opioid users 1 to 2 years after the initiation of cancer treatment. The majority of the patients (64%) were at low risk and had a 1.2% probability of long‐term opioid use. Moderate‐risk patients (33% of the cohort) had a 5.6% probability of long‐term opioid use. High‐risk patients (3.5% of the cohort) had a 75% probability of long‐term opioid use. The opioid risk score had an area under the receiver operating characteristic curve of 0.869. Conclusions This study found that a cancer opioid risk score could accurately identify individuals with a high likelihood of long‐term opioid use in a large, generalizable cohort of cancer survivors. Future research should focus on the implementation of these scores into clinical practice and how this could affect prescriber behavior and patient outcomes. Lay Summary A novel 5‐question clinical decision tool allows physicians treating patients with cancer to accurately predict which patients will persistently be using opioid medications after completing therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一味愚完成签到,获得积分10
1秒前
1秒前
大鱼不是大禹应助zxy采纳,获得20
2秒前
杨乐多完成签到,获得积分10
2秒前
CipherSage应助不如看海采纳,获得10
2秒前
南北发布了新的文献求助30
2秒前
龙行天下完成签到,获得积分10
2秒前
M95发布了新的文献求助10
2秒前
土著猫发布了新的文献求助10
2秒前
lyyyyyy完成签到 ,获得积分10
3秒前
乐观汲关注了科研通微信公众号
4秒前
4秒前
4秒前
路由器完成签到,获得积分10
5秒前
专注汲完成签到,获得积分10
5秒前
花痴的冰蓝完成签到,获得积分10
5秒前
42cyberpunk发布了新的文献求助10
5秒前
5秒前
钱钱钱发布了新的文献求助10
6秒前
名侦探柯基完成签到,获得积分10
6秒前
6秒前
冯俞淇发布了新的文献求助10
6秒前
6秒前
yin完成签到,获得积分10
6秒前
端庄断秋完成签到,获得积分10
6秒前
成就凡双应助123采纳,获得10
7秒前
江哥完成签到,获得积分10
7秒前
7秒前
李健应助荣哥儿采纳,获得10
7秒前
科目三应助荣哥儿采纳,获得10
7秒前
蓝天应助Zhou采纳,获得10
8秒前
深情安青应助苹果亦巧采纳,获得30
8秒前
9秒前
M95完成签到,获得积分10
9秒前
ccmow应助Ccccc采纳,获得10
9秒前
10秒前
WX发布了新的文献求助10
10秒前
FashionBoy应助蔡继海采纳,获得10
11秒前
忧郁豆芽发布了新的文献求助10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671