The Development and Validation of a Machine Learning Model to Predict Bacteremia and Fungemia in Hospitalized Patients Using Electronic Health Record Data

真菌血症 菌血症 医学 逻辑回归 血培养 接收机工作特性 Boosting(机器学习) 梯度升压 回顾性队列研究 曲线下面积 急诊医学 内科学 重症监护医学 外科 人工智能 随机森林 抗生素 真菌病 计算机科学 微生物学 生物
作者
Sivasubramanium V. Bhavani,Zachary Lonjers,Kyle A. Carey,Majid Afshar,Emily Gilbert,Nirav Shah,Elbert S. Huang,Matthew M. Churpek
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:48 (11): e1020-e1028 被引量:20
标识
DOI:10.1097/ccm.0000000000004556
摘要

Objectives: Bacteremia and fungemia can cause life-threatening illness with high mortality rates, which increase with delays in antimicrobial therapy. The objective of this study is to develop machine learning models to predict blood culture results at the time of the blood culture order using routine data in the electronic health record. Design: Retrospective analysis of a large, multicenter inpatient data. Setting: Two academic tertiary medical centers between the years 2007 and 2018. Subjects: All hospitalized patients who received a blood culture during hospitalization. Interventions: The dataset was partitioned temporally into development and validation cohorts: the logistic regression and gradient boosting machine models were trained on the earliest 80% of hospital admissions and validated on the most recent 20%. Measurements and Main Results: There were 252,569 blood culture days—defined as nonoverlapping 24-hour periods in which one or more blood cultures were ordered. In the validation cohort, there were 50,514 blood culture days, with 3,762 cases of bacteremia (7.5%) and 370 cases of fungemia (0.7%). The gradient boosting machine model for bacteremia had significantly higher area under the receiver operating characteristic curve (0.78 [95% CI 0.77–0.78]) than the logistic regression model (0.73 [0.72–0.74]) ( p < 0.001). The model identified a high-risk group with over 30 times the occurrence rate of bacteremia in the low-risk group (27.4% vs 0.9%; p < 0.001). Using the low-risk cut-off, the model identifies bacteremia with 98.7% sensitivity. The gradient boosting machine model for fungemia had high discrimination (area under the receiver operating characteristic curve 0.88 [95% CI 0.86–0.90]). The high-risk fungemia group had 252 fungemic cultures compared with one fungemic culture in the low-risk group (5.0% vs 0.02%; p < 0.001). Further, the high-risk group had a mortality rate 60 times higher than the low-risk group (28.2% vs 0.4%; p < 0.001). Conclusions: Our novel models identified patients at low and high-risk for bacteremia and fungemia using routinely collected electronic health record data. Further research is needed to evaluate the cost-effectiveness and impact of model implementation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花完成签到,获得积分10
刚刚
糊辣鱼完成签到 ,获得积分10
2秒前
寒冷的匪发布了新的文献求助10
8秒前
萤火虫完成签到 ,获得积分10
10秒前
GQ完成签到,获得积分10
10秒前
单纯的小土豆完成签到,获得积分10
10秒前
zy完成签到,获得积分10
14秒前
胡平完成签到,获得积分10
14秒前
19秒前
yimutian完成签到,获得积分10
20秒前
吭哧吭哧完成签到,获得积分10
20秒前
20秒前
cai完成签到,获得积分10
21秒前
qweqwe完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
sltg发布了新的文献求助10
24秒前
23333发布了新的文献求助10
26秒前
hanwei_mei发布了新的文献求助10
27秒前
学习发布了新的文献求助10
28秒前
今天进步了吗完成签到,获得积分10
29秒前
doctorbin完成签到 ,获得积分10
29秒前
小冯完成签到 ,获得积分10
30秒前
Ava应助sltg采纳,获得10
31秒前
懿桉完成签到,获得积分10
33秒前
Pengcheng完成签到 ,获得积分10
33秒前
jinghong完成签到 ,获得积分10
33秒前
39秒前
邪恶青年完成签到,获得积分10
41秒前
sltg完成签到,获得积分10
41秒前
lizzz完成签到,获得积分10
45秒前
zzzq完成签到 ,获得积分10
46秒前
逍遥小书生完成签到 ,获得积分10
46秒前
和谐尔阳完成签到 ,获得积分10
48秒前
andrele应助懿桉采纳,获得10
52秒前
大白包子李完成签到,获得积分10
53秒前
爱蕊咖完成签到 ,获得积分10
56秒前
马慧娜完成签到,获得积分10
57秒前
A_Caterpillar完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776093
求助须知:如何正确求助?哪些是违规求助? 3321687
关于积分的说明 10206639
捐赠科研通 3036787
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841