Chuanjiang Qin,Toshinori Matsushima,William J. Potscavage,Atula S. D. Sandanayaka,Matthew R. Leyden,Fatima Bencheikh,Kenichi Goushi,Fabrice Mathevet,Benoı̂t Heinrich,Go Yumoto,Yoshihiko Kanemitsu,Chihaya Adachi
Perovskite light-emitting diodes are promising for next-generation lighting and displays because of their high colour purity and performance1. Although the management of singlet and triplet excitons is fundamental to the design of efficient organic light-emitting diodes, the nature of how excitons affect performance is still not clear in perovskite2–4 and quasi-two-dimensional (2D) perovskite-based devices5–9. Here, we show that triplet excitons are key to efficient emission in green quasi-2D perovskite devices and that quenching of triplets by the organic cation is a major loss path. Employing an organic cation with a high triplet energy level (phenylethylammonium) in a quasi-2D perovskite based on formamidinium lead bromide yields efficient harvesting of triplets. Furthermore, we show that upconversion of triplets to singlets can occur, making 100% harvesting of electrically generated excitons potentially possible. The external quantum and current efficiencies of our green (527 nm) devices reached 12.4% and 52.1 cd A−1, respectively. Careful harvesting of triplet excitons allows the realization of efficient green-emitting quasi-2D perovskite LEDs.