极化子
纳米光子学
超晶格
物理
声子
范德瓦尔斯力
光电子学
材料科学
凝聚态物理
光学
量子力学
分子
作者
Mingyuan Chen,Xiao Lin,Thao H. Dinh,Zhiren Zheng,Jialiang Shen,Qiong Ma,Hongsheng Chen,Pablo Jarillo‐Herrero,Siyuan Dai
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2020-07-13
卷期号:19 (12): 1307-1311
被引量:293
标识
DOI:10.1038/s41563-020-0732-6
摘要
Moiré engineering is being intensively investigated as a method to tune the electronic, magnetic and optical properties of twisted van der Waals materials. Advances in moiré engineering stem from the formation of peculiar moiré superlattices at small, specific twist angles. Here we report configurable nanoscale light–matter waves—phonon polaritons—by twisting stacked α-phase molybdenum trioxide (α-MoO3) slabs over a broad range of twist angles from 0° to 90°. Our combined experimental and theoretical results reveal a variety of polariton wavefront geometries and topological transitions as a function of the twist angle. In contrast to the origin of the modified electronic band structure in moiré superlattices, the polariton twisting configuration is attributed to the electromagnetic interaction of highly anisotropic hyperbolic polaritons in stacked α-MoO3 slabs. These results indicate twisted α-MoO3 to be a promising platform for nanophotonic devices with tunable functionalities. Infrared nanoimaging of phonon polaritons in twisted α-phase molybdenum trioxide bilayers reveals tunable wavefront geometries and topological transitions over a broad range of twist angles, offering a configurable platform for nanophotonic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI