Using Machine Learning to Predict Postoperative Liver Dysfunction After Aortic Arch Surgery

医学 逻辑回归 主动脉弓 接收机工作特性 心脏外科 血管外科 回顾性队列研究 腹部外科 围手术期 外科 内科学 机器学习 主动脉 计算机科学
作者
Sheng Shi,Guiyu Lei,Lijing Yang,Congya Zhang,Zhongrong Fang,Jun Li,Guyan Wang
出处
期刊:Journal of Cardiothoracic and Vascular Anesthesia [Elsevier BV]
卷期号:35 (8): 2330-2335 被引量:11
标识
DOI:10.1053/j.jvca.2021.02.046
摘要

Objectives The study compared machine-learning models with traditional logistic regression to predicting liver outcomes after aortic arch surgery. Design Retrospective review from January 2013 to May 2017. Setting Fuwai Hospital. Participants The study comprised 672 consecutive patients who had undergone aortic arch surgery. Measurements and Main Results Three machine-learning methods were compared with logistic regression with regard to the prediction of postoperative liver dysfunction (PLD) after aortic arch surgery. The perioperative characteristics, including the patients’ baseline medical condition and intraoperative data, were analyzed. The performance of the models was assessed using the area under the receiver operating characteristic curve. Naïve Bayes had the best discriminative ability for the prediction of PLD (area under the receiver operating characteristic curve = 0.77) compared with random forest (0.76), support vector machine (0.73), and logistic regression (0.72). The primary endpoint of PLD was observed in 185 patients (27.5%). The cardiopulmonary bypass time, long surgery time, long aortic clamp time, high preoperative bilirubin value, and low rectal temperature were strongly associated with the development of PLD after aortic arch surgery. Conclusion The machine-learning method of naïve Bayes predicts PLD after aortic arch surgery significantly better than traditional logistic regression. The study compared machine-learning models with traditional logistic regression to predicting liver outcomes after aortic arch surgery. Retrospective review from January 2013 to May 2017. Fuwai Hospital. The study comprised 672 consecutive patients who had undergone aortic arch surgery. Three machine-learning methods were compared with logistic regression with regard to the prediction of postoperative liver dysfunction (PLD) after aortic arch surgery. The perioperative characteristics, including the patients’ baseline medical condition and intraoperative data, were analyzed. The performance of the models was assessed using the area under the receiver operating characteristic curve. Naïve Bayes had the best discriminative ability for the prediction of PLD (area under the receiver operating characteristic curve = 0.77) compared with random forest (0.76), support vector machine (0.73), and logistic regression (0.72). The primary endpoint of PLD was observed in 185 patients (27.5%). The cardiopulmonary bypass time, long surgery time, long aortic clamp time, high preoperative bilirubin value, and low rectal temperature were strongly associated with the development of PLD after aortic arch surgery. The machine-learning method of naïve Bayes predicts PLD after aortic arch surgery significantly better than traditional logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助ZhenpuWang采纳,获得10
刚刚
简言发布了新的文献求助10
刚刚
我是你爹发布了新的文献求助10
刚刚
135完成签到 ,获得积分10
刚刚
liu完成签到,获得积分10
1秒前
2秒前
深情安青应助Enoch采纳,获得10
2秒前
源来是洲董完成签到,获得积分10
2秒前
干净莆发布了新的文献求助10
2秒前
bear完成签到,获得积分10
2秒前
Anan完成签到,获得积分10
3秒前
机智ss发布了新的文献求助10
3秒前
IchenNG发布了新的文献求助10
3秒前
IchenNG发布了新的文献求助10
3秒前
yy76完成签到,获得积分10
3秒前
大兵哥发布了新的文献求助10
3秒前
符符发布了新的文献求助10
3秒前
孙军涛完成签到,获得积分10
3秒前
Maocan完成签到,获得积分20
4秒前
orixero应助kk采纳,获得50
4秒前
4秒前
YooM发布了新的文献求助10
5秒前
早睡早起完成签到,获得积分10
5秒前
5秒前
哭泣咖啡豆完成签到,获得积分10
5秒前
科斯基完成签到,获得积分10
6秒前
liu发布了新的文献求助10
6秒前
大个应助TengyueZhang采纳,获得10
6秒前
7秒前
7秒前
霸气的板栗完成签到,获得积分10
8秒前
搜集达人应助hp571采纳,获得10
8秒前
克里斯完成签到 ,获得积分10
9秒前
菜菜完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
科研通AI2S应助0美团外卖0采纳,获得10
11秒前
hhhhh完成签到,获得积分10
11秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828574
求助须知:如何正确求助?哪些是违规求助? 3371011
关于积分的说明 10465801
捐赠科研通 3090912
什么是DOI,文献DOI怎么找? 1700600
邀请新用户注册赠送积分活动 817934
科研通“疑难数据库(出版商)”最低求助积分说明 770588