已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepPPF: A deep learning framework for predicting protein family

计算机科学 人工智能 深度学习 蛋白质功能预测 新颖性 蛋白质家族 机器学习 计算生物学 数据挖掘 生物 蛋白质功能 遗传学 基因 神学 哲学
作者
Shehu Mohammed Yusuf,Fuhao Zhang,Min Zeng,Min Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:428: 19-29 被引量:15
标识
DOI:10.1016/j.neucom.2020.11.062
摘要

Machine learning pipelines for protein functional family prediction are urgently needed especially now that only 1% of raw protein sequences have been manually annotated. Although existing machine learning algorithms have achieved a decent performance in modeling and predicting the functional families of protein sequences, they still have two drawbacks. First, biological dependencies among nucleotides are not rich enough to describe motifs for these methods. Also, existing algorithms are not accurate enough to predict the functional families of newly discovered proteins. To address the above limitations simultaneously, we propose a novel deep learning framework for predicting protein family, DeepPPF, which employs the word2vec technique in capturing distributional dependencies among nucleotides and discovers rich features from diverse motif lengths to characterize proteins. The novelty of the DeepPPF is in utilizing distributional dependencies among nucleotides. Experimental results on G protein-coupled receptor hierarchical datasets show the effectiveness of DeepPPF in achieving the state-of-the-art performance in items of Mathew’s correlation coefficients (MCC) of 97.62%, 88.45% and, 83.09% for family, sub-family and, sub-subfamily hierarchical levels, respectively. Also, DeepPPF outperformed existing methods in terms of prediction accuracy and Mathew’s correlation coefficients on the cluster of orthologous groups (COG) and phage of orthologous groups (POG) datasets. Furthermore, we analyzed the ability of DeepPPF framework to discover rich motifs for functional classes with the least sets of protein sequences. The experimental results show that rich motif discovery is key to improving the modeling performance of protein families through deep learning techniques. Finally, we investigated the effect of transferring a low-level functional domain level to a high-level functional domain and results show that the target domain prediction can be improved with transfer learning. Therefore, our proposed deep learning framework can be useful in characterizing protein functional families. The codes and datasets are available at https://github.com/CSUBioGroup/DeepPPF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的夏之完成签到,获得积分10
4秒前
7秒前
7秒前
佐zzz完成签到 ,获得积分10
9秒前
wh应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
wh应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
WaitP应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
魯蛋完成签到,获得积分10
15秒前
JamesPei应助多发sci一区采纳,获得10
16秒前
科研通AI5应助幸福猎人1991采纳,获得10
16秒前
17秒前
聆琳完成签到 ,获得积分10
18秒前
18秒前
ding应助无敌小行星采纳,获得10
19秒前
20秒前
小会发布了新的文献求助10
22秒前
直率的笑翠完成签到 ,获得积分10
22秒前
22秒前
26秒前
栗子发布了新的文献求助10
28秒前
29秒前
32秒前
32秒前
微某某完成签到 ,获得积分10
32秒前
anne完成签到 ,获得积分10
33秒前
明理向露完成签到,获得积分10
35秒前
35秒前
搞笑5次完成签到,获得积分10
36秒前
39秒前
39秒前
付艳完成签到,获得积分10
40秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803876
求助须知:如何正确求助?哪些是违规求助? 3348685
关于积分的说明 10339831
捐赠科研通 3064829
什么是DOI,文献DOI怎么找? 1682793
邀请新用户注册赠送积分活动 808450
科研通“疑难数据库(出版商)”最低求助积分说明 764096