Advancing Large Language Models for Spatiotemporal and Semantic Association Mining of Similar Environmental Events

联想(心理学) 计算机科学 地理 关联规则学习 自然语言处理 人工智能 心理学 心理治疗师
作者
Yuanyuan Tian,Wenwen Li,Lei Hu,Xiao Chen,Michael Brook,Michael Brubaker,Fan Zhang,A. K. Liljedahl
出处
期刊:Transactions in Gis [Wiley]
标识
DOI:10.1111/tgis.13282
摘要

ABSTRACT Retrieval and recommendation are two essential tasks in modern search tools. This paper introduces a novel retrieval‐reranking framework leveraging large language models to enhance the spatiotemporal and semantic associated mining and recommendation of relevant, unusual climate and environmental events described in news articles and web posts. This framework uses advanced natural language processing techniques to address the limitations of traditional manual curation methods in terms of high labor costs and lack of scalability. Specifically, we explore an optimized solution to employ cutting‐edge embedding models for semantically analyzing spatiotemporal events (news) and propose a Geo‐Time Re‐ranking strategy that integrates multi‐faceted criteria including spatial proximity, temporal association, semantic similarity, and category‐instructed similarity to rank and identify similar spatiotemporal events. We apply the proposed framework to a dataset of four thousand local environmental observer network events, achieving top performance on recommending similar events among multiple cutting‐edge dense retrieval models. The search and recommendation pipeline can be applied to a wide range of similar data search tasks dealing with geospatial and temporal data. We hope that by linking relevant events, we can better aid the general public to gain enhanced understanding on climate change and its impact on different communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨涵完成签到 ,获得积分10
刚刚
1秒前
星驰完成签到 ,获得积分10
2秒前
2秒前
4秒前
zkf完成签到,获得积分10
5秒前
小小发布了新的文献求助10
5秒前
77完成签到 ,获得积分10
7秒前
tengfei完成签到 ,获得积分10
8秒前
9秒前
斯文败类应助含糊的安柏采纳,获得10
11秒前
一帆风顺发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
13秒前
fox199753206完成签到,获得积分10
13秒前
14秒前
曼陀罗华完成签到 ,获得积分10
14秒前
小小完成签到,获得积分10
14秒前
陆未离完成签到 ,获得积分10
14秒前
FCH2023发布了新的文献求助30
15秒前
chenghong发布了新的文献求助30
15秒前
15秒前
16秒前
reset完成签到 ,获得积分10
16秒前
熊宜浓发布了新的文献求助10
16秒前
3080发布了新的文献求助10
18秒前
18秒前
18秒前
guozi发布了新的文献求助30
19秒前
刻苦的坤发布了新的文献求助10
19秒前
21秒前
21秒前
hjyylab应助闪电采纳,获得10
22秒前
22秒前
Harden发布了新的文献求助30
23秒前
阳光念桃完成签到,获得积分10
24秒前
25秒前
guozi完成签到,获得积分10
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838478
求助须知:如何正确求助?哪些是违规求助? 3380795
关于积分的说明 10515867
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707474
邀请新用户注册赠送积分活动 821757
科研通“疑难数据库(出版商)”最低求助积分说明 772935