Significantly enhanced energy harvesting performance in lead-free piezoceramic via a synergistic design strategy

铅(地质) 能量收集 材料科学 纳米技术 能量(信号处理) 物理 量子力学 地貌学 地质学
作者
Jianxun Zhang,Qianqian Xu,Yan Zhang,Wei Guo,Hanmin Zeng,Yuan He,Jiatao Wu,Longlong Guo,Kechao Zhou,Dou Zhang
出处
期刊:Materials horizons [Royal Society of Chemistry]
标识
DOI:10.1039/d4mh01902d
摘要

With the rapid development of the Internet of Things, there exists an urgent necessity for high performance piezoelectric energy harvesters to facilitate the construction of more efficient wireless sensor systems. However, the development of piezoelectric energy harvesters with high power density remains a major challenge. In this study, we present a synergistic design strategy aimed at improving the output performance of piezoelectric energy harvesters. Micro-pores with low permittivity were introduced into the ceramics to improve the piezoelectric key parameters, including the piezoelectric voltage coefficient (g33) and the piezoelectric energy harvesting figure of merit (FoM33). The barium titanate (BTO) ceramics with 60% aligned pores obtained high g33 and FoM33, which were up to 24.8 × 10-3 V m N-1 and 3.3 × 10-12 m2 N-1. By optimizing the aspect ratio of each ceramic unit, a higher effective stress level dispersed in the ceramic phase was achieved, and the open circuit voltage of the sensor was significantly improved (41.3%). The construction of high-output performance piezoelectric energy harvesters based on BTO ceramics with relatively low piezoelectric coefficients was successfully achieved via this synergistic design strategy. This high-performance energy harvester exhibits excellent open-circuit voltage (354.8 V), short-circuit current (710.1 μA) and power density (16.7 mW cm-2), demonstrating the feasibility of this synergistic design strategy in developing high-output energy supply systems. The application of piezoelectric energy harvesters in powering micro-devices and monitoring train stability was demonstrated. This work is expected to provide new opportunities for the fabrication of future self-powered electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的棒棒糖完成签到 ,获得积分10
1秒前
YSL发布了新的文献求助10
4秒前
Z17完成签到 ,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
传奇3应助学不完了采纳,获得10
7秒前
maox1aoxin应助踏实的逍遥采纳,获得40
11秒前
fengxj完成签到 ,获得积分10
12秒前
www完成签到,获得积分10
15秒前
萧儿完成签到,获得积分10
24秒前
cc完成签到,获得积分10
29秒前
独特的高山完成签到 ,获得积分10
34秒前
西西发布了新的文献求助10
36秒前
酷酷的怀莲完成签到,获得积分10
36秒前
39秒前
祁依欧欧完成签到,获得积分10
40秒前
赘婿应助Albee采纳,获得10
42秒前
42秒前
科研通AI2S应助MITNO1采纳,获得10
44秒前
温柔沛槐完成签到 ,获得积分10
45秒前
勤恳凡儿发布了新的文献求助10
45秒前
47秒前
47秒前
Lucas应助老10采纳,获得10
48秒前
刻苦荔枝发布了新的文献求助10
48秒前
搜集达人应助WML采纳,获得10
52秒前
DingYL完成签到,获得积分10
53秒前
55秒前
55秒前
隐形曼青应助蓝岳洋采纳,获得10
55秒前
妙奇完成签到,获得积分10
56秒前
刻苦荔枝完成签到,获得积分10
57秒前
chenshi0515发布了新的文献求助10
58秒前
邓希静完成签到,获得积分10
59秒前
DingYL发布了新的文献求助10
59秒前
残幻应助Millian采纳,获得10
59秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445