Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE Publishing]
被引量:3
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顺心一凤发布了新的文献求助10
1秒前
高贵小兔子发布了新的文献求助200
1秒前
chenmo完成签到,获得积分10
1秒前
无私妙菡发布了新的文献求助30
2秒前
蒋欣欣发布了新的文献求助10
2秒前
馆长举报晨曦求助涉嫌违规
2秒前
梁liang完成签到,获得积分10
3秒前
drDeng完成签到,获得积分10
3秒前
3秒前
Lucas应助贤惠的碧空采纳,获得10
4秒前
CC发布了新的文献求助10
4秒前
5秒前
5秒前
Lucas应助渔婆采纳,获得10
5秒前
站走跑完成签到 ,获得积分10
5秒前
fsf完成签到,获得积分10
5秒前
AHR发布了新的文献求助10
6秒前
公孙朝雨完成签到,获得积分10
6秒前
JIAYIWANG发布了新的文献求助10
6秒前
露露完成签到,获得积分10
7秒前
handada发布了新的文献求助10
7秒前
馆长举报耶稣与梦求助涉嫌违规
7秒前
you秀的哈密瓜完成签到,获得积分10
7秒前
忧郁的听露完成签到,获得积分10
8秒前
9秒前
CodeCraft应助机灵信封采纳,获得10
9秒前
iNk应助w2503采纳,获得20
10秒前
搜集达人应助高有财采纳,获得10
10秒前
负责水风完成签到,获得积分10
10秒前
公主stellar发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
evny发布了新的文献求助10
11秒前
XHT完成签到,获得积分10
11秒前
瑞汐没有咖啡完成签到,获得积分10
11秒前
NexusExplorer应助任性宇豪采纳,获得10
11秒前
11秒前
爱听歌的鞋垫完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664