Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE Publishing]
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w934420513发布了新的文献求助30
1秒前
2秒前
小曲完成签到 ,获得积分10
3秒前
大意的雨双完成签到 ,获得积分10
3秒前
哇哇哇发布了新的文献求助10
3秒前
SciGPT应助强健的冰旋采纳,获得10
4秒前
5秒前
zhangzi完成签到,获得积分10
5秒前
ZJin发布了新的文献求助10
6秒前
9秒前
LLL完成签到 ,获得积分10
10秒前
Kevin Huang发布了新的文献求助10
11秒前
彭于晏应助HJJHJH采纳,获得10
13秒前
ZJin完成签到,获得积分10
15秒前
NexusExplorer应助103921wjk采纳,获得10
17秒前
17秒前
微笑高山完成签到 ,获得积分10
17秒前
sss完成签到,获得积分10
18秒前
科研通AI5应助无心的雪枫采纳,获得10
18秒前
Lazure发布了新的文献求助10
20秒前
20秒前
忐忑的黑猫应助joleisalau采纳,获得10
20秒前
21秒前
21秒前
cdercder应助世上无难事采纳,获得10
21秒前
科研通AI2S应助世上无难事采纳,获得10
21秒前
21秒前
顾矜应助正直绍辉采纳,获得10
22秒前
25秒前
FashionBoy应助丁莞采纳,获得10
26秒前
天气尚可发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
世上无难事完成签到,获得积分10
30秒前
30秒前
Lazure完成签到,获得积分10
31秒前
31秒前
小周发布了新的文献求助10
32秒前
科研通AI5应助奋斗的绿凝采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358