Graph-Based Cooperation Multi-Agent Reinforcement Learning for Intelligent Traffic Signal Control

计算机科学 强化学习 交通信号灯 图形 多智能体系统 智能代理 人工智能 分布式计算 计算机网络 理论计算机科学 实时计算
作者
Jing Shang,Shunmei Meng,Jun Hou,Xiaoran Zhao,Xiaokang Zhou,Rong Jiang,Lianyong Qi,Qianmu Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2025.3525640
摘要

In the trend of continuously advancing urban intelligent transport construction, traditional traffic signal control (TSC) struggles to make effective decisions with complex traffic conditions. Although multi-agent deep reinforcement learning (MARL) shows promise in optimizing traffic flow, most existing studies ignore the complex relationships between signal lights and fail to communicate with neighbors effectively. Moreover, the deterministic strategies generated by Q-learning-based methods struggle to be extended to large-scale urban road networks. Therefore, this paper proposes a multi-agent graph-based soft actor-critic (MAGSAC) approach for TSC, which combines graph neural networks with the Soft Actor-Critic (SAC) algorithm and extends it to multi-agent environments to address the TSC problem. Specifically, we employ graph-based networks and attention mechanism to expand the receptive domain of agents, enable environmental information to be shared among agents, and utilize the attention mechanism to filter out unimportant information. The algorithm adheres to the Centralized Training Decentralized Execution (CTDE) paradigm to minimize the non-stationarity of MARL. Finally, a rigorous experimental evaluation was conducted using the CityFlow simulator on both synthetic traffic grids and real-world urban road networks. Experimental results show that MAGSAC outperforms other TSC methods in performance metrics, including average queue length and waiting time, and achieves excellent performance under complex urban traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大鹏应助ZZY采纳,获得20
刚刚
王十应助善良的剑通采纳,获得1000
1秒前
2秒前
怡然的海之完成签到,获得积分10
3秒前
是真的完成签到 ,获得积分10
6秒前
太叔书南完成签到,获得积分10
7秒前
奋斗的珍完成签到,获得积分10
9秒前
单纯的盼雁完成签到,获得积分10
10秒前
瑜瑜完成签到 ,获得积分10
14秒前
科研通AI5应助自由蓉采纳,获得30
16秒前
17秒前
科研通AI5应助玛丽洁采纳,获得10
17秒前
烟花应助lllllllllllllll采纳,获得10
20秒前
111发布了新的文献求助10
23秒前
25秒前
26秒前
26秒前
再睡十分钟完成签到,获得积分10
27秒前
yuyu完成签到,获得积分10
27秒前
realssr完成签到,获得积分20
28秒前
28秒前
负责玉米发布了新的文献求助10
28秒前
28秒前
后来应助张梦阳采纳,获得10
29秒前
启程牛牛完成签到,获得积分0
29秒前
29秒前
黄家乐关注了科研通微信公众号
31秒前
玛丽洁发布了新的文献求助10
32秒前
XH发布了新的文献求助10
34秒前
wanci应助Tin采纳,获得10
35秒前
asdsfz完成签到,获得积分10
36秒前
科研通AI5应助从容的谷云采纳,获得30
36秒前
林梓峰完成签到,获得积分10
36秒前
帅气犀牛完成签到,获得积分10
36秒前
39秒前
科目三应助织心采纳,获得10
39秒前
畅快的小兔子完成签到,获得积分10
39秒前
科研通AI5应助优美的元瑶采纳,获得10
41秒前
41秒前
兰园蓝完成签到,获得积分20
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800113
求助须知:如何正确求助?哪些是违规求助? 3345405
关于积分的说明 10324832
捐赠科研通 3061903
什么是DOI,文献DOI怎么找? 1680581
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509