Crackwave R-convolutional neural network: A discrete wavelet transform and deep learning fusion model for underwater dam crack detection

卷积神经网络 水下 人工智能 计算机科学 深度学习 模式识别(心理学) 小波 离散小波变换 融合 小波变换 地质学 海洋学 语言学 哲学
作者
Bo Guo,Xu Li,Dezhi Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/14759217241308132
摘要

Crack detection is an essential part of structural health monitoring (SHM) for underwater dams, which is crucial for preventing potential structural failures and ensuring the long-term stability. Deep learning-based image processing algorithms have become a research hotspot in the field of crack detection. However, the complex underwater environment has posed challenges to underwater dam crack detection. To address these issues, we propose CrackWave R-convolutional neural network (CW R-CNN), a novel underwater dam crack detection model that fuses discrete wavelet transform (DWT) and deep learning. The proposed model introduces a novel backbone network, DwtResNet, which incorporates DWT to comprehensively extract frequency-domain features from underwater crack images. To overcome the limitations of Intersection over Union (IoU), particularly when predicted and ground truth bounding boxes do not overlap, we employ the generalized IoU (GIoU) function. Furthermore, we apply the soft nonmaximum suppression (NMS) algorithm to reduce the risk of missing fine cracks. In addition, we utilized a self-developed underwater dam image acquisition robot to capture a large number of underwater dam crack images, forming the self-acquired dataset. Evaluating the proposed model on this dataset showed that its MAP_0.5 outperformed SSD, YOLOv5, and the conventional Faster R-CNN. The proposed model proved more effective than other models, especially in detecting fine cracks and handling complex backgrounds. These experimental results not only demonstrate the effectiveness of CW R-CNN in underwater dam crack detection but also highlight its potential application in SHM. It provides essential technical support for the safe monitoring of underwater dam structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zpyichen发布了新的文献求助10
2秒前
英俊的铭应助欣慰荔枝采纳,获得10
4秒前
额mmmm完成签到,获得积分10
4秒前
YYQX完成签到 ,获得积分10
4秒前
zjw发布了新的文献求助10
5秒前
6秒前
咿咿呀呀有完成签到,获得积分10
8秒前
9秒前
MP_zhang发布了新的文献求助10
9秒前
9秒前
李健的粉丝团团长应助000采纳,获得10
9秒前
10秒前
yangyang完成签到,获得积分10
10秒前
10秒前
舒舒舒完成签到,获得积分20
11秒前
琛哥物理发布了新的文献求助10
11秒前
13秒前
default完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
汉堡包应助Moliria采纳,获得10
14秒前
老王发布了新的文献求助10
15秒前
玩命的山兰应助王子采纳,获得10
16秒前
17秒前
孤独的谷秋完成签到,获得积分10
19秒前
19秒前
水上书发布了新的文献求助10
19秒前
欣慰荔枝发布了新的文献求助10
19秒前
科目三应助123采纳,获得10
19秒前
20秒前
21秒前
22秒前
简单骁完成签到,获得积分10
23秒前
23秒前
烟花应助圆滑的铁勺采纳,获得10
23秒前
23秒前
24秒前
24秒前
琛哥物理完成签到,获得积分10
26秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897202
求助须知:如何正确求助?哪些是违规求助? 3441089
关于积分的说明 10820012
捐赠科研通 3166066
什么是DOI,文献DOI怎么找? 1749173
邀请新用户注册赠送积分活动 845156
科研通“疑难数据库(出版商)”最低求助积分说明 788443