Crackwave R-convolutional neural network: A discrete wavelet transform and deep learning fusion model for underwater dam crack detection

卷积神经网络 水下 人工智能 计算机科学 深度学习 模式识别(心理学) 小波 离散小波变换 融合 小波变换 地质学 海洋学 语言学 哲学
作者
Bo Guo,Xu Li,Dezhi Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:2
标识
DOI:10.1177/14759217241308132
摘要

Crack detection is an essential part of structural health monitoring (SHM) for underwater dams, which is crucial for preventing potential structural failures and ensuring the long-term stability. Deep learning-based image processing algorithms have become a research hotspot in the field of crack detection. However, the complex underwater environment has posed challenges to underwater dam crack detection. To address these issues, we propose CrackWave R-convolutional neural network (CW R-CNN), a novel underwater dam crack detection model that fuses discrete wavelet transform (DWT) and deep learning. The proposed model introduces a novel backbone network, DwtResNet, which incorporates DWT to comprehensively extract frequency-domain features from underwater crack images. To overcome the limitations of Intersection over Union (IoU), particularly when predicted and ground truth bounding boxes do not overlap, we employ the generalized IoU (GIoU) function. Furthermore, we apply the soft nonmaximum suppression (NMS) algorithm to reduce the risk of missing fine cracks. In addition, we utilized a self-developed underwater dam image acquisition robot to capture a large number of underwater dam crack images, forming the self-acquired dataset. Evaluating the proposed model on this dataset showed that its MAP_0.5 outperformed SSD, YOLOv5, and the conventional Faster R-CNN. The proposed model proved more effective than other models, especially in detecting fine cracks and handling complex backgrounds. These experimental results not only demonstrate the effectiveness of CW R-CNN in underwater dam crack detection but also highlight its potential application in SHM. It provides essential technical support for the safe monitoring of underwater dam structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nice1025完成签到,获得积分10
刚刚
科研通AI5应助小芒果采纳,获得10
2秒前
YvetteSun发布了新的文献求助10
2秒前
2秒前
123完成签到,获得积分10
3秒前
阳光萌萌完成签到,获得积分10
3秒前
4秒前
可靠的寻绿完成签到,获得积分10
5秒前
好运来完成签到,获得积分10
5秒前
糊涂涂完成签到 ,获得积分10
7秒前
李健应助悦耳笑蓝采纳,获得10
7秒前
zxr完成签到,获得积分20
10秒前
snoke发布了新的文献求助50
12秒前
12秒前
打打应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
顺利的琳应助科研通管家采纳,获得20
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
酸奶应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
番西茄发布了新的文献求助10
14秒前
zy完成签到 ,获得积分10
15秒前
12完成签到,获得积分10
16秒前
小木木完成签到,获得积分10
16秒前
深情安青应助老豆采纳,获得10
17秒前
feng完成签到,获得积分10
17秒前
迷人依白发布了新的文献求助10
19秒前
caolin完成签到,获得积分10
20秒前
爆米花应助鱼咬羊采纳,获得30
22秒前
22秒前
善学以致用应助番西茄采纳,获得10
23秒前
fff完成签到,获得积分10
23秒前
上官若男应助木木三采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4338020
求助须知:如何正确求助?哪些是违规求助? 3847504
关于积分的说明 12016200
捐赠科研通 3488530
什么是DOI,文献DOI怎么找? 1914594
邀请新用户注册赠送积分活动 957545
科研通“疑难数据库(出版商)”最低求助积分说明 857911