亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia

精神分裂症(面向对象编程) 动态功能连接 静息状态功能磁共振成像 功能连接 萧条(经济学) 心理学 精神病 默认模式网络 精神科 人工智能 听力学 神经科学 医学 计算机科学 经济 宏观经济学
作者
Hui Chen,Yanqin Lei,Rihui Li,Xinxin Xia,Nanyi Cui,Xianliang Chen,Jiali Liu,Huajia Tang,Jiawei Zhou,Ying Huang,Yusheng Tian,Xiaoping Wang,Jiansong Zhou
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:29 (4): 1088-1098 被引量:32
标识
DOI:10.1038/s41380-023-02395-3
摘要

This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljh发布了新的文献求助10
4秒前
7秒前
ljh完成签到,获得积分20
13秒前
14秒前
Li发布了新的文献求助10
19秒前
边雨完成签到 ,获得积分10
1分钟前
2分钟前
longyb1发布了新的文献求助10
2分钟前
3分钟前
稿子哥发布了新的文献求助10
3分钟前
3分钟前
Lhx发布了新的文献求助10
3分钟前
longyb1完成签到,获得积分10
4分钟前
alaa完成签到,获得积分10
4分钟前
沉默幼晴发布了新的文献求助30
4分钟前
4分钟前
Qqqqq发布了新的文献求助10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
wangfaqing942完成签到 ,获得积分10
5分钟前
乐正亦寒完成签到 ,获得积分10
5分钟前
xun发布了新的文献求助30
6分钟前
6分钟前
Yy完成签到 ,获得积分10
6分钟前
lll发布了新的文献求助10
6分钟前
111完成签到 ,获得积分10
6分钟前
沉默幼晴关注了科研通微信公众号
6分钟前
沉默幼晴发布了新的文献求助10
7分钟前
7分钟前
zxr发布了新的文献求助30
7分钟前
传奇3应助zxr采纳,获得10
7分钟前
xun完成签到,获得积分20
7分钟前
JD完成签到 ,获得积分10
8分钟前
qianzhihe完成签到,获得积分10
8分钟前
8分钟前
沉默幼晴完成签到,获得积分10
8分钟前
sadh2完成签到 ,获得积分10
8分钟前
8分钟前
YOLO完成签到,获得积分10
8分钟前
9分钟前
儒雅HR发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880743
求助须知:如何正确求助?哪些是违规求助? 6577459
关于积分的说明 15690287
捐赠科研通 5000608
什么是DOI,文献DOI怎么找? 2694384
邀请新用户注册赠送积分活动 1636350
关于科研通互助平台的介绍 1593549