清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia

精神分裂症(面向对象编程) 动态功能连接 静息状态功能磁共振成像 功能连接 萧条(经济学) 心理学 精神病 默认模式网络 精神科 人工智能 听力学 神经科学 医学 计算机科学 经济 宏观经济学
作者
Hui Chen,Yanqin Lei,Rihui Li,Xinxin Xia,Nanyi Cui,Xianliang Chen,Jiali Liu,Huajia Tang,Jiawei Zhou,Ying Huang,Yusheng Tian,Xiaoping Wang,Jiansong Zhou
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:29 (4): 1088-1098 被引量:32
标识
DOI:10.1038/s41380-023-02395-3
摘要

This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
林克完成签到,获得积分10
3秒前
7秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
15秒前
SDNUDRUG完成签到,获得积分10
20秒前
刘丰完成签到 ,获得积分10
24秒前
30秒前
xrl完成签到 ,获得积分10
33秒前
飞龙在天完成签到,获得积分0
35秒前
Singularity应助科研通管家采纳,获得10
41秒前
Zero完成签到,获得积分10
46秒前
慕山完成签到 ,获得积分10
46秒前
Disci完成签到,获得积分10
51秒前
悠树里发布了新的文献求助10
51秒前
Moonpie应助SDNUDRUG采纳,获得10
53秒前
57秒前
1分钟前
徐徐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
悠树里完成签到,获得积分10
1分钟前
侯长秀完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hhuajw应助读书的时候采纳,获得10
1分钟前
Syan完成签到,获得积分10
1分钟前
BMG完成签到,获得积分10
1分钟前
runtang完成签到,获得积分10
1分钟前
美满惜寒完成签到,获得积分10
1分钟前
tingting完成签到,获得积分10
1分钟前
呵呵哒完成签到,获得积分10
1分钟前
Temperature完成签到,获得积分10
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
ys1008完成签到,获得积分10
1分钟前
张浩林完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
qq完成签到,获得积分10
1分钟前
675完成签到,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732767
求助须知:如何正确求助?哪些是违规求助? 5342448
关于积分的说明 15322522
捐赠科研通 4878121
什么是DOI,文献DOI怎么找? 2620983
邀请新用户注册赠送积分活动 1570090
关于科研通互助平台的介绍 1526872