Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia

精神分裂症(面向对象编程) 动态功能连接 静息状态功能磁共振成像 功能连接 萧条(经济学) 心理学 精神病 默认模式网络 精神科 人工智能 听力学 神经科学 医学 计算机科学 经济 宏观经济学
作者
Hui Chen,Yanqin Lei,Rihui Li,Xinxin Xia,Nanyi Cui,Xianliang Chen,Jiali Liu,Huajia Tang,Jiawei Zhou,Ying Huang,Yusheng Tian,Xiaoping Wang,Jiansong Zhou
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:29 (4): 1088-1098 被引量:32
标识
DOI:10.1038/s41380-023-02395-3
摘要

This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xuz完成签到 ,获得积分10
1秒前
jun完成签到 ,获得积分10
3秒前
悄悄拔尖儿完成签到 ,获得积分10
33秒前
激流勇进wb完成签到 ,获得积分10
34秒前
GankhuyagJavzan完成签到,获得积分10
35秒前
加油杨完成签到 ,获得积分10
37秒前
纯情的天奇完成签到 ,获得积分10
41秒前
sdbz001完成签到,获得积分0
43秒前
在水一方完成签到 ,获得积分10
44秒前
zmm完成签到 ,获得积分10
45秒前
夕阳下仰望完成签到 ,获得积分10
45秒前
石头完成签到,获得积分10
47秒前
林大侠完成签到,获得积分10
48秒前
48秒前
兴奋以蓝完成签到,获得积分10
50秒前
小垃圾10号完成签到,获得积分10
53秒前
在水一方应助科研通管家采纳,获得10
54秒前
fjhsg25发布了新的文献求助10
55秒前
盐焗小星球完成签到 ,获得积分10
59秒前
Kelsey完成签到 ,获得积分10
1分钟前
南浔完成签到 ,获得积分10
1分钟前
深情海秋完成签到,获得积分10
1分钟前
1分钟前
天真依玉完成签到,获得积分10
1分钟前
serenity711完成签到 ,获得积分10
1分钟前
大大大忽悠完成签到 ,获得积分10
1分钟前
xu完成签到 ,获得积分10
1分钟前
苏兜兜完成签到,获得积分10
1分钟前
纪言七许完成签到 ,获得积分10
1分钟前
zuozuo完成签到,获得积分10
1分钟前
Adhklu完成签到 ,获得积分10
1分钟前
在水一方应助钮祜禄萱采纳,获得10
1分钟前
1分钟前
hub-pubmed发布了新的文献求助10
1分钟前
笑对人生完成签到 ,获得积分10
1分钟前
腼腆的海豚完成签到 ,获得积分10
1分钟前
一苇以航发布了新的文献求助10
1分钟前
onevip完成签到,获得积分0
1分钟前
i2stay完成签到,获得积分0
1分钟前
leapper完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5881196
求助须知:如何正确求助?哪些是违规求助? 6584636
关于积分的说明 15690930
捐赠科研通 5001280
什么是DOI,文献DOI怎么找? 2694660
邀请新用户注册赠送积分活动 1636981
关于科研通互助平台的介绍 1593801