Developing a Machine-Learning Model to Predict Clash Resolution Options

计算机科学 机器学习 人工智能 分辨率(逻辑) 工程类
作者
Ashit Harode,Walid Thabet,Xinghua Gao
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (2) 被引量:4
标识
DOI:10.1061/jccee5.cpeng-5548
摘要

Even with the utilization of software tools like Navisworks to automate clash detection, clash resolution in construction projects remains a slow and manual process. The reason is the meticulous nature of the process where coordinators need to ensure that resolving one clash does not lead to new clashes. The use of machine learning to automate clash resolution as a potential option to improve the clash resolution process has been suggested with research showing positive results to support the implementation. While the research shows high accuracy in predicting clash resolution options to support automation, the scope limits the discussion on the complex and often lengthy process of developing a machine-learning model. Based on this research gap, the authors in this paper discuss the development of a prediction model to identify clash resolution options for given clashes. The discussion is focused on individual steps involved in creating machine-learning models like data collection, data preprocessing, and machine-learning algorithm development and selection. The authors also address common challenges in the development of machine-learning models including class imbalance and availability of limited data. The authors utilize a multilabel synthetic oversampling method to generate different percentages of synthetic data to account for class imbalance and limited data sets. Using this data set, the authors trained five machine-learning algorithms and reported on their accuracy. The authors concluded that increasing the data set with 20% synthetic data, and using an artificial neural network to develop the machine-learning model to automate the resolution of clashes have generated better results with an average accuracy of around 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛城l发布了新的文献求助10
刚刚
星辰大海应助hm5751682采纳,获得10
1秒前
可乐包饭完成签到,获得积分10
1秒前
orixero应助陈琛采纳,获得10
1秒前
rj完成签到 ,获得积分10
1秒前
蓝天发布了新的文献求助10
3秒前
山药汤完成签到,获得积分10
3秒前
4秒前
aibobbb发布了新的文献求助10
4秒前
饱满剑封发布了新的文献求助10
4秒前
4秒前
香蕉诗蕊应助清脆靳采纳,获得10
4秒前
刁刁发布了新的文献求助10
4秒前
5秒前
5秒前
tianfu1899发布了新的文献求助10
5秒前
JamesPei应助查查采纳,获得10
6秒前
YH完成签到,获得积分10
7秒前
生动觅柔完成签到 ,获得积分10
7秒前
8秒前
li发布了新的文献求助10
8秒前
李欣科发布了新的文献求助10
8秒前
9秒前
peter完成签到,获得积分10
9秒前
9秒前
灰色的乌完成签到,获得积分10
9秒前
10秒前
Pluto发布了新的文献求助10
12秒前
peter发布了新的文献求助10
12秒前
12秒前
Qiangzai发布了新的文献求助30
13秒前
酷酷的麦片完成签到 ,获得积分10
13秒前
关心蕊发布了新的文献求助10
13秒前
KBYer发布了新的文献求助10
14秒前
aass发布了新的文献求助10
15秒前
15秒前
ke发布了新的文献求助10
15秒前
腿毛怪大叔应助小芮采纳,获得10
16秒前
共享精神应助Daria采纳,获得10
17秒前
爱笑以松发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566392
求助须知:如何正确求助?哪些是违规求助? 4651181
关于积分的说明 14695302
捐赠科研通 4593195
什么是DOI,文献DOI怎么找? 2520029
邀请新用户注册赠送积分活动 1492366
关于科研通互助平台的介绍 1463472