Developing a Machine-Learning Model to Predict Clash Resolution Options

计算机科学 机器学习 人工智能 分辨率(逻辑) 工程类
作者
Ashit Harode,Walid Thabet,Xinghua Gao
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (2) 被引量:4
标识
DOI:10.1061/jccee5.cpeng-5548
摘要

Even with the utilization of software tools like Navisworks to automate clash detection, clash resolution in construction projects remains a slow and manual process. The reason is the meticulous nature of the process where coordinators need to ensure that resolving one clash does not lead to new clashes. The use of machine learning to automate clash resolution as a potential option to improve the clash resolution process has been suggested with research showing positive results to support the implementation. While the research shows high accuracy in predicting clash resolution options to support automation, the scope limits the discussion on the complex and often lengthy process of developing a machine-learning model. Based on this research gap, the authors in this paper discuss the development of a prediction model to identify clash resolution options for given clashes. The discussion is focused on individual steps involved in creating machine-learning models like data collection, data preprocessing, and machine-learning algorithm development and selection. The authors also address common challenges in the development of machine-learning models including class imbalance and availability of limited data. The authors utilize a multilabel synthetic oversampling method to generate different percentages of synthetic data to account for class imbalance and limited data sets. Using this data set, the authors trained five machine-learning algorithms and reported on their accuracy. The authors concluded that increasing the data set with 20% synthetic data, and using an artificial neural network to develop the machine-learning model to automate the resolution of clashes have generated better results with an average accuracy of around 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juju发布了新的文献求助10
刚刚
王威发布了新的文献求助10
1秒前
董吧啦发布了新的文献求助10
1秒前
1秒前
1秒前
zhaolei0519发布了新的文献求助10
2秒前
2秒前
光亮锦程完成签到,获得积分10
2秒前
2秒前
柠檬不萌完成签到,获得积分10
3秒前
3秒前
tt发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
3秒前
4秒前
祖老头发布了新的文献求助10
4秒前
Stefano发布了新的文献求助10
4秒前
4秒前
5秒前
Orange应助mhy采纳,获得10
5秒前
马小鱼发布了新的文献求助10
6秒前
领导范儿应助zhaolei0519采纳,获得10
7秒前
辛夷发布了新的文献求助10
7秒前
成就映冬发布了新的文献求助10
8秒前
火星上的衣完成签到,获得积分10
8秒前
8秒前
R11111发布了新的文献求助10
9秒前
ym发布了新的文献求助30
9秒前
搜集达人应助纪靖雁采纳,获得10
10秒前
Kaylee发布了新的文献求助10
10秒前
juju完成签到,获得积分10
10秒前
JUYIN发布了新的文献求助10
10秒前
顾矜应助是真的不吃鱼采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
何1完成签到,获得积分10
13秒前
安静笑晴完成签到,获得积分10
13秒前
开朗灯泡发布了新的文献求助10
14秒前
15秒前
徐佳乐完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5575281
求助须知:如何正确求助?哪些是违规求助? 4661006
关于积分的说明 14733681
捐赠科研通 4601157
什么是DOI,文献DOI怎么找? 2525193
邀请新用户注册赠送积分活动 1495399
关于科研通互助平台的介绍 1465145