亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defense Strategies for Epidemic Cyber Security Threats: Modeling and Analysis by Using a Machine Learning Approach

计算机科学 Levenberg-Marquardt算法 流行病模型 理论(学习稳定性) 人工神经网络 人工智能 算法 机器学习 社会学 人口学 人口
作者
Muhammad Sulaiman,M. Waseem,Addisu Negash Ali,Ghaylen Laouini,Fahad Sameer Alshammari
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 4958-4984 被引量:8
标识
DOI:10.1109/access.2024.3349660
摘要

This paper investigates the mathematical modelling of cybercrime attacks on multiple devices connected to the server. This model is a very successful way for cybercrime, bio-mathematics, and artificial intelligence to investigate and comprehend the behaviour of mannerisms with harmful intentions in a computer system. In this computational model, we are studying the factors (i.e., computer viruses, disease infections, and cyberattacks) that affect connected devices. This compartmental model, SEIAR, represents the various hardware utilised during the cyberattack. The letters S, E, I, A, and R are used to represent different stages or groups of individuals in epidemiological models, helping to understand the spread and control of infectious diseases. The dynamics of the previous model are determined by a series of differential equations. The dynamics of the preceding model are determined by a system of differential equations. Numerical solutions of the model are calculated using backpropagated Levenberg-Marquardt algorithm (BLMA) and a specific optimization algorithm known as the Levenberg-Marquardt algorithm (LMA). Reference solutions were obtained by using the Runge-Kutta algorithm of order 4 (RK-4). The backpropagated Levenberg-Marquardt algorithm (BLMA), commonly known as the damped least-squares (DLS) method. Subsequently, we endeavor to analyze the surrogate solutions obtained for the system and determine the stability of our approach. Moreover, we aim to ascertain fitting curves to the target solutions with minimum errors and achieve a regression value of 1 for all the predicted solutions. The outcome of our simulations ensures that our approach is capable of making precise predictions concerning the behavior of real-world phenomena under varying circumstances. The testing, validation, and training of our technique concerning the reference solutions are then used to determine the accuracy of the surrogate solutions obtained by BLMA. Convergence analysis, error histograms, regression analysis, and curve fitting were used for each differential equation to examine the robustness and accuracy of the design strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨瑞东完成签到 ,获得积分10
刚刚
额123没名完成签到 ,获得积分10
刚刚
刚刚
1秒前
方的圆完成签到 ,获得积分10
2秒前
3秒前
6秒前
小二郎应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
脑洞疼应助不想做实验采纳,获得10
10秒前
上官若男应助哇达西哇采纳,获得10
13秒前
小饼干完成签到 ,获得积分10
18秒前
悦耳冬萱完成签到 ,获得积分10
20秒前
rengar完成签到,获得积分10
23秒前
26秒前
28秒前
量子星尘发布了新的文献求助10
31秒前
ljc发布了新的文献求助10
31秒前
terence发布了新的文献求助10
35秒前
40秒前
50秒前
51秒前
ambition完成签到,获得积分10
56秒前
发C刊的人完成签到 ,获得积分10
57秒前
小不完成签到 ,获得积分10
57秒前
MHCL完成签到 ,获得积分10
57秒前
Dlyar1125完成签到,获得积分10
1分钟前
搞怪冬天完成签到,获得积分20
1分钟前
1分钟前
1分钟前
个性的饼干完成签到,获得积分10
1分钟前
ED应助搞怪冬天采纳,获得10
1分钟前
从容芮完成签到,获得积分0
1分钟前
牛马哥完成签到,获得积分10
1分钟前
1分钟前
fly完成签到,获得积分10
1分钟前
大溺完成签到 ,获得积分10
1分钟前
风中的惊蛰完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142508
求助须知:如何正确求助?哪些是违规求助? 3678765
关于积分的说明 11627629
捐赠科研通 3372390
什么是DOI,文献DOI怎么找? 1852347
邀请新用户注册赠送积分活动 915140
科研通“疑难数据库(出版商)”最低求助积分说明 829672