MixFormer: End-to-End Tracking With Iterative Mixed Attention

端到端原则 计算机科学 人工智能 死胡同 跟踪(教育) 前端和后端 雷达跟踪器 计算机视觉 算法 数学 电信 雷达 流量(数学) 操作系统 心理学 几何学 教育学
作者
Yutao Cui,Cheng Jiang,Gangshan Wu,Limin Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4129-4146 被引量:47
标识
DOI:10.1109/tpami.2024.3349519
摘要

Visual object tracking often employs a multi-stage pipeline of feature extraction, target information integration, and bounding box estimation. To simplify this pipeline and unify the process of feature extraction and target information integration, in this paper, we present a compact tracking framework, termed as MixFormer, built upon transformers. Our core design is to utilize the flexibility of attention operations, and we propose a Mixed Attention Module (MAM) for simultaneous feature extraction and target information integration. This synchronous modeling scheme allows us to extract target-specific discriminative features and perform extensive communication between target and search area. Based on MAM, we build our MixFormer trackers simply by stacking multiple MAMs and placing a localization head on top. Specifically, we instantiate two types of MixFormer trackers, a hierarchical tracker MixCvT, and a non-hierarchical simple tracker MixViT. For these two trackers, we investigate a series of pre-training methods and uncover the different behaviors between supervised pre-training and self-supervised pre-training in our MixFormer trackers. We also extend the masked autoencoder pre-training to our MixFormer trackers and design the new competitive TrackMAE pre-training technique. Finally, to handle multiple target templates during online tracking, we devise an asymmetric attention scheme in MAM to reduce computational cost, and propose an effective score prediction module to select high-quality templates. Our MixFormer trackers set a new state-of-the-art performance on seven tracking benchmarks, including LaSOT, TrackingNet, VOT2020, GOT-10 k, OTB100, TOTB and UAV123. In particular, our MixViT-L achieves AUC scores of 73.3% on LaSOT, 86.1% on TrackingNet and 82.8% on TOTB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ionize采纳,获得10
2秒前
Unlung完成签到,获得积分10
3秒前
3秒前
4秒前
wan完成签到,获得积分10
4秒前
4秒前
粉红色的小花卷完成签到 ,获得积分10
5秒前
完美世界应助annie采纳,获得10
5秒前
nn完成签到,获得积分10
5秒前
剧院的饭桶完成签到,获得积分10
6秒前
乐观荔枝完成签到,获得积分10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
HANGOVERG应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
烤冷面应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
gkads应助科研通管家采纳,获得10
8秒前
ho应助科研通管家采纳,获得10
8秒前
GingerF应助科研通管家采纳,获得80
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
gkads应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
开心灵发布了新的文献求助10
10秒前
10秒前
10秒前
传奇3应助舒心的香寒采纳,获得10
11秒前
11秒前
ionize完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164