SMCC: A Novel Clustering Method for Single- and Multi-Omics Data Based on Co-Regularized Network Fusion

聚类分析 传感器融合 数据挖掘 计算机科学 人工智能 层次聚类 融合 机器学习 语言学 哲学
作者
Sha Tian,Ying Yang,Yushan Qiu,Quan Zou
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tcbb.2024.3353335
摘要

Clustering is a common technique for statistical data analysis and is essential for developing precision medicine. Numerous computational methods have been proposed for integrating multi-omics data to identify cancer subtypes. However, most existing clustering models based on network fusion fail to preserve the consistency of the distribution of the data before and after fusion. Motivated by this observation, we would like to measure and minimize the distribution difference between networks, which may not be in the same space, to improve the performance of data fusion. We were therefore motivated to develop a flexible clustering model, based on network fusion, that minimizes the distribution difference between the data before and after fusion by co-regularization; the model can be applied to both single- and multi-omics data. We propose a new network fusion model for single- and multi-omics data clustering for identifying cancer or cell subtypes based on co-regularized network fusion (SMCC). SMCC integrates low-rank subspace representation and entropy to fuse networks. In addition, it measures and minimizes the distribution difference between the similarity networks and the fusion network by co-regularization. The model can both reduce the noise interference in the source data and make the statistical characteristics of the fusion result closer to those of the source data. We evaluated the clustering performance of SMCC across 16 real single- and multi-omics dataset. The experimental results demonstrated that SMCC is superior to 17 state-of-the-art clustering methods. Moreover, it is effective for identifying cancer or cell subtypes, thereby promoting the development of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情夏寒完成签到 ,获得积分10
刚刚
青橘短衫发布了新的文献求助10
刚刚
qiao应助大饼大饼采纳,获得10
刚刚
qiao应助大饼大饼采纳,获得10
刚刚
1秒前
小号完成签到,获得积分10
5秒前
科研通AI5应助安an采纳,获得10
6秒前
tgoutgou发布了新的文献求助10
7秒前
大饼大饼完成签到,获得积分10
7秒前
Jasper应助哈哈哈采纳,获得10
10秒前
深情安青应助默默的无敌采纳,获得10
10秒前
NexusExplorer应助AYY采纳,获得10
11秒前
霍师傅发布了新的文献求助10
12秒前
唯一完成签到 ,获得积分10
14秒前
爆米花应助是小明啦采纳,获得10
18秒前
21秒前
22秒前
安静小懒猪完成签到,获得积分20
23秒前
科研通AI5应助霍师傅采纳,获得10
23秒前
搜集达人应助霍师傅采纳,获得10
23秒前
所所应助霍师傅采纳,获得10
23秒前
tyZhang完成签到,获得积分10
23秒前
深情安青应助霍师傅采纳,获得10
23秒前
传奇3应助霍师傅采纳,获得10
23秒前
搜集达人应助霍师傅采纳,获得10
23秒前
Hello应助霍师傅采纳,获得10
23秒前
上官若男应助霍师傅采纳,获得10
23秒前
深情安青应助药学小团子采纳,获得10
25秒前
26秒前
哈哈哈发布了新的文献求助10
26秒前
26秒前
小譆发布了新的文献求助10
28秒前
28秒前
28秒前
香蕉觅云应助w934420513采纳,获得10
31秒前
冰魂应助Ade采纳,获得10
31秒前
32秒前
tgoutgou发布了新的文献求助20
33秒前
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366