敏化
呼吸系统
呼吸上皮
毒性
吸入
体内
免疫学
呼吸粘膜
体外
化学
哮喘
医学
病理
上皮
生物
生物化学
解剖
内科学
生物技术
作者
Artur Christian Garcia da Silva,Izadora Caroline Furtado de Mendonça,Marize Campos Valadares
出处
期刊:Toxicology
[Elsevier BV]
日期:2024-02-17
卷期号:503: 153756-153756
被引量:2
标识
DOI:10.1016/j.tox.2024.153756
摘要
Chemical Respiratory Allergy (CRA) is triggered after exposure to Low Molecular Weight (LMW) sensitizers and manifests clinically as asthma and rhinitis. From a risk/toxicity assessment point of view, there are few methods, none of them validated, for evaluating the respiratory sensitization potential of chemicals once the in vivo-based models usually employed for inhalation toxicity addressment do not comprise allergenicity endpoints specifically. Based on that, we developed, characterized, and evaluated the applicability of a 3D-tetraculture airway model reconstructed with bronchial epithelial, fibroblasts, endothelial and monocytic cell lines. Moreover, we exposed the tissue to maleic anhydride (MA) aerosols to challenge the model and subsequently assessed inflammatory and functional aspects of the tissue. The reconstructed tissue presented phenotypic biomarkers compatible with human bronchial epithelium, and MA aerosol exposure triggered an increased IL-8 and IL-6 production, reactive oxygen species (ROS) formation, and apoptosis of epithelial cells. Besides, augmented IL-8 production by monocytic cells was also found, correlating with dendritic cell activation within the co-culture model after MA exposure. Our results demonstrated that the 3D-tetraculture bronchial model presents hallmarks related to human airways' structure and function. Additionally, exposure to a respiratory sensitizer induced inflammatory and functional alterations in the reconstructed tissue, rendering it a valuable tool for exploring the mechanistic framework of chemically induced respiratory sensitization.
科研通智能强力驱动
Strongly Powered by AbleSci AI