Boundary-Guided Lightweight Semantic Segmentation With Multi-Scale Semantic Context

计算机科学 语义计算 语义压缩 语义相似性 自然语言处理 比例(比率) 分割 背景(考古学) 人工智能 语义技术 情报检索 语义网 地质学 量子力学 物理 古生物学
作者
Quan Zhou,Linjie Wang,Guangwei Gao,Bin Kang,Weihua Ou,Huimin Lu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7887-7900 被引量:20
标识
DOI:10.1109/tmm.2024.3372835
摘要

Lightweight semantic segmentation plays an essential role in image signal processing that is beneficial to many multimedia applications, such as self-driving, robotic vision, and virtual reality. Due to the powerful capability to encode image details and semantics, many lightweight dual-resolution networks have been proposed in recent years for semantic segmentation. In spite of achieving remarkable progresses, they often ignore semantic context ranged from different scales. Furthermore, most of them always neglect the object boundaries, serving as a significant assistance for lightweight semantic segmentation. To alleviate these problems, this paper develops a Boundary-guide dual-resolution lightweight network with multi-scale Semantic Context, called BSCNet, for semantic segmentation. Specifically, to enhance the capability of feature representation, an Extremely Lightweight Pyramid Pooling Module (ELPPM) is designed to capture multi-scale semantic context at the top of low-resolution branch of BSCNet. In addition, to increase feature similarity of the same object while keeping feature discrimination of different objects, pixel information is propagated throughout the entire object area using a simple Boundary Auxiliary Fusion Module (BAFM), where the predicted object boundaries are served as high-level guidance to refine low-level convolutional features. The comprehensive experimental results have demonstrated that our BSCNet is simple and effective, achieving state-of-the-art trade-off in terms of segmentation accuracy and running efficiency on CityScapes, CamVid, and KITTI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RTchen发布了新的文献求助20
刚刚
1秒前
1秒前
yidashi完成签到,获得积分10
2秒前
踩点行动完成签到,获得积分10
3秒前
小马甲应助SEVEN采纳,获得10
5秒前
黄可以完成签到,获得积分10
6秒前
longggg发布了新的文献求助10
7秒前
7秒前
waiting完成签到 ,获得积分10
9秒前
10秒前
酷炫的尔丝完成签到 ,获得积分10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
温柔的天奇完成签到 ,获得积分10
12秒前
waiting关注了科研通微信公众号
13秒前
May发布了新的文献求助10
13秒前
春锅锅完成签到,获得积分10
15秒前
吴迪发布了新的文献求助10
15秒前
16秒前
Orange应助王金志采纳,获得10
16秒前
SEVEN发布了新的文献求助10
16秒前
wol007完成签到 ,获得积分10
18秒前
Cala洛~发布了新的文献求助10
22秒前
英俊的铭应助大力的含卉采纳,获得10
24秒前
wuyanchi完成签到,获得积分10
25秒前
27秒前
28秒前
xc完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333820
求助须知:如何正确求助?哪些是违规求助? 3845353
关于积分的说明 12011300
捐赠科研通 3485906
什么是DOI,文献DOI怎么找? 1913458
邀请新用户注册赠送积分活动 956641
科研通“疑难数据库(出版商)”最低求助积分说明 857306