亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLOv7-DCN-SORT: An algorithm for detecting and counting targets on Acetes fishing vessel operation

垂钓 分类 计算机科学 渔业 算法 人工智能 生物 数据库
作者
Yueying Sun,Shengmao Zhang,Yongchuang Shi,Fenghua Tang,Junlin Chen,Ying Xiong,Yang Dai,Li Lin
出处
期刊:Fisheries Research [Elsevier BV]
卷期号:274: 106983-106983 被引量:3
标识
DOI:10.1016/j.fishres.2024.106983
摘要

The quantification of fishing information on fishing vessels is a prerequisite for implementing refined management of quota-based fishing. In order to address the target detection and information quantification issues in the quota-based fishing of Acetes chinensis, this study installed an Electronic Monitoring (EM) system on Acetes chinensis fishing vessels. Using the EM system video as a data source. Based on YOLOv7, an improved object detection algorithm (YOLOv7-DCN) is proposed. Additionally, drawing on the main ideas of the SORT algorithm, a target counting algorithm is also proposed (YOLOv7-DCN-SORT). YOLOv7-DCN object detection algorithm uses DCNv2 as the backbone network to detect the main targets in fishing vessel operations, improving the network's ability to detect deformable targets. The YOLOv7-DCN-SORT target counting algorithm utilizes the YOLOv7-DCN obtained in the detection phase as the target detection model. It applies the Kalman filter and Hungarian algorithm from the SORT algorithm to track and predict the counted targets. By setting collision detection lines, timestamps, thresholds, and counters, this algorithm can accurately count the number of baskets filled with Acetes chinensis and the number of nets deployed during fishing operations. The results show that: 1) The improved YOLOv7-DCN achieved precision, recall, mAP, and F1-score of 98.21%, 98.43%, 99.19%, and 98.33%, respectively, for each target detection category on the test set. These values represent improvements of 2.06%, 0.64%, 0.08%, and 1.37% compared to the original YOLOv7 model. 2) The YOLOv7-DCN-SORT algorithm achieved counting accuracy rates of 82.00% for counting the number of Acetes chinensis baskets and 96.61% for the number of deployed nets. In summary, this study provides methods for automated recording and intelligent information processing in operations on offshore fishing vessels, serving as a reference for quota-based fishing management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖大海完成签到 ,获得积分10
6秒前
6秒前
可千万不要躺平呀完成签到,获得积分0
7秒前
读书完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
17秒前
一夜寒秋完成签到 ,获得积分10
19秒前
读书发布了新的文献求助10
21秒前
25秒前
一夜寒秋发布了新的文献求助10
32秒前
ElsaFan完成签到,获得积分10
34秒前
student完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
48秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
共享精神应助被窝哲学家采纳,获得10
1分钟前
Lucas应助旅程采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hy完成签到 ,获得积分10
1分钟前
1分钟前
好名字发布了新的文献求助10
1分钟前
科研通AI5应助vanshaw采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
vanshaw发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI5应助渊渟岳峙采纳,获得10
2分钟前
2分钟前
旅程发布了新的文献求助10
2分钟前
vanshaw完成签到,获得积分10
2分钟前
Sana发布了新的文献求助30
2分钟前
jxp完成签到,获得积分10
2分钟前
Zakry完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
今后应助Zakry采纳,获得10
2分钟前
FashionBoy应助Omni采纳,获得10
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863938
求助须知:如何正确求助?哪些是违规求助? 3406214
关于积分的说明 10648787
捐赠科研通 3130099
什么是DOI,文献DOI怎么找? 1726220
邀请新用户注册赠送积分活动 831615
科研通“疑难数据库(出版商)”最低求助积分说明 779958