A general framework for robust stability analysis of neural networks with discrete time delays

人工神经网络 动力系统理论 李普希茨连续性 理论(学习稳定性) 计算机科学 离散时间和连续时间 李雅普诺夫函数 随机神经网络 控制理论(社会学) 细胞神经网络 班级(哲学) 数学 循环神经网络 人工智能 机器学习 非线性系统 控制(管理) 纯数学 量子力学 统计 物理
作者
Melike Solak,Özlem Faydasiçok,Sabri Arik
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 186-198 被引量:18
标识
DOI:10.1016/j.neunet.2023.02.040
摘要

Robust stability of different types of dynamical neural network models including time delay parameters have been extensively studied, and many different sets of sufficient conditions ensuring robust stability of these types of dynamical neural network models have been presented in past decades. In conducting stability analysis of dynamical neural systems, some basic properties of the employed activation functions and the forms of delay terms included in the mathematical representations of dynamical neural networks are of crucial importance in obtaining global stability criteria for dynamical neural systems. Therefore, this research article will examine a class of neural networks expressed by a mathematical model that involves the discrete time delay terms, the Lipschitz activation functions and possesses the intervalized parameter uncertainties. This paper will first present a new and alternative upper bound value of the second norm of the class of interval matrices, which will have an important impact on obtaining the desired results for establishing robust stability of these neural network models. Then, by exploiting wellknown Homeomorphism mapping theory and basic Lyapunov stability theory, we will state a new general framework for determining some novel robust stability conditions for dynamical neural networks possessing discrete time delay terms. This paper will also make a comprehensive review of some previously published robust stability results and show that the existing robust stability results can be easily derived from the results given in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子发布了新的文献求助10
1秒前
bellapp完成签到 ,获得积分10
2秒前
2秒前
CipherSage应助酷熊采纳,获得10
2秒前
qiqi完成签到,获得积分10
2秒前
3秒前
xzy998应助星星采纳,获得10
4秒前
5444完成签到,获得积分10
5秒前
小马甲应助KIRA采纳,获得10
6秒前
7秒前
FashionBoy应助成就映之采纳,获得30
7秒前
5444发布了新的文献求助10
8秒前
9秒前
yanyan发布了新的文献求助10
11秒前
花生仔应助LJL采纳,获得10
11秒前
11秒前
hh发布了新的文献求助10
11秒前
FF应助俏皮的依瑶采纳,获得60
11秒前
完美世界应助莹仔采纳,获得10
12秒前
奋斗完成签到 ,获得积分10
13秒前
15秒前
qiming完成签到,获得积分10
16秒前
16秒前
17秒前
深情安青应助嘻嘻哈哈哈采纳,获得10
18秒前
19秒前
科研通AI5应助清堂采纳,获得10
19秒前
苏曼青完成签到,获得积分10
20秒前
科研小兰完成签到 ,获得积分10
21秒前
23秒前
23秒前
汉堡包应助龙华之士采纳,获得10
23秒前
24秒前
26秒前
26秒前
aaiirrii发布了新的文献求助20
27秒前
小蘑菇应助眼睛大花生采纳,获得10
27秒前
Orange应助yu采纳,获得10
28秒前
28秒前
北北北应助iboy采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462260
求助须知:如何正确求助?哪些是违规求助? 3925596
关于积分的说明 12181470
捐赠科研通 3577911
什么是DOI,文献DOI怎么找? 1965640
邀请新用户注册赠送积分活动 1004394
科研通“疑难数据库(出版商)”最低求助积分说明 898864