Interpretable convolutional neural network with multilayer wavelet for Noise-Robust Machinery fault diagnosis

可解释性 卷积神经网络 判别式 稳健性(进化) 小波 噪音(视频) 计算机科学 模式识别(心理学) 特征提取 人工智能 机器学习 生物化学 基因 图像(数学) 化学
作者
Huan Wang,Zhiliang Liu,Dandan Peng,Ming J. Zuo
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:195: 110314-110314 被引量:76
标识
DOI:10.1016/j.ymssp.2023.110314
摘要

Convolutional neural networks (CNNs) are being utilized for mechanical fault diagnosis, due to its excellent automatic discriminative feature learning ability. However, the poor interpretability and noise robustness of CNNs have plagued both academia and industry. Since traditional signal analysis technology has a sound theoretical basis and physical meaning, it motivates us to use signal processing theory to improve the interpretability and performance of the CNN algorithm. To this end, this paper proposes a multilayer wavelet attention convolutional neural network (MWA-CNN) for noise-robust machinery fault diagnosis. This framework aims to learn discriminative fault features from the wavelet domain, which allows the model to obtain better interpretability and superior performance than conventional time-domain-based CNNs. The proposed Discrete Wavelet Attention Layer (DWA-Layer) is used to map time domain signals to wavelet space, and obtain valuable information through the learnable convolutional layer. By alternately using DWA-Layer and convolutional layer for signal decomposition and feature learning, the proposed framework actually embeds a similar multi-resolution analysis algorithm in CNN. This helps integrate physics-based knowledge into the CNN. Finally, the frequency attention mechanism is proposed to enhance the ability of MWA-CNN to obtain fault-related features from different frequency components. Experiments on high-speed aeronautical bearing and motor bearing datasets prove that the proposed method has excellent fault diagnosis ability and noise robustness. The visual analysis of the attention mechanism contributes to the interpretability of CNN in the field of fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东风发布了新的文献求助10
1秒前
海的呼唤发布了新的文献求助10
2秒前
Ni发布了新的文献求助10
3秒前
hyf完成签到 ,获得积分10
3秒前
chenbin完成签到,获得积分10
3秒前
lx923586发布了新的文献求助10
4秒前
6秒前
科研通AI5应助xiixix采纳,获得10
8秒前
9秒前
10秒前
11秒前
12秒前
小嘎完成签到 ,获得积分10
13秒前
三三完成签到,获得积分10
13秒前
海的呼唤完成签到,获得积分10
13秒前
ChenXY发布了新的文献求助10
15秒前
失眠的剑完成签到,获得积分10
15秒前
舒适惜寒发布了新的文献求助10
16秒前
yang完成签到,获得积分10
18秒前
小蘑菇应助木雷采纳,获得10
19秒前
gg完成签到,获得积分20
19秒前
动漫大师发布了新的文献求助50
20秒前
顺利念双发布了新的文献求助10
20秒前
脑洞疼应助大师采纳,获得10
20秒前
jqdsg完成签到,获得积分10
21秒前
Orange应助Yumeng采纳,获得10
21秒前
22秒前
GaPb氘壬完成签到,获得积分10
23秒前
Ni完成签到,获得积分10
23秒前
ChenXY完成签到,获得积分10
24秒前
小蘑菇应助橙果果采纳,获得10
24秒前
26秒前
xiixix发布了新的文献求助10
28秒前
28秒前
junzilan完成签到,获得积分10
29秒前
bc应助科研通管家采纳,获得20
31秒前
31秒前
31秒前
今后应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102