DSHFNet: Dynamic Scale Hierarchical Fusion Network Based on Multiattention for Hyperspectral Image and LiDAR Data Classification

计算机科学 特征提取 人工智能 模式识别(心理学) 特征(语言学) 激光雷达 比例(比率) 高光谱成像 缩放空间 图像融合 传感器融合 融合 土地覆盖 遥感 数据挖掘 图像处理 图像(数学) 土地利用 地理 工程类 土木工程 哲学 地图学 语言学
作者
Yining Feng,Liyang Song,Lu Wang,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:15
标识
DOI:10.1109/tgrs.2023.3311535
摘要

With the continuous improvement of satellite sensor performance, it is becoming easier to obtain different types of remote sensing (RS) data from multiple sensors, and the fusion of hyperspectral (HS) images and light detection and ranging (LiDAR) for land use/land cover classification has become a research hotspot. However, the current mainstream methods still have defects in feature extraction and feature fusion. In the feature extraction stage, previous methods usually use a single-scale patch as input and a fixed convolution kernel for feature extraction, which makes it difficult to extract features in line with different land cover types at the same time and to obtain high-quality features. Although multi-scale feature extraction can solve the one-sidedness problem of single-scale features, it also brings the challenge of high-dimensional multi-scale features. In the feature fusion stage, the current fusion methods are relatively simple. Therefore, we propose a dynamic scale hierarchical fusion network (DSHFNet) for fusion classification of HS images and LiDAR data. By calculating the similarity in the scale space and judging the information at different scales through the threshold value, the appropriate scale features are dynamically selected, the small-scale features are integrated into the large-scale features, and the dimensionality of the features is reduced. This method solves the unreliability problem of single-scale features and the high dimension problem of multi-scale features. In the feature fusion process, different attention modules are used for hierarchical fusion, spatial attention modules are used for shallow fusion and joint feature extraction, and modal attention modules are used for deep fusion of joint features and features from different sensors to achieve complete complementarity of features. Experimental evaluations on three real RS datasets demonstrate the superiority of the proposed method compared to existing methods. The source code can be downloaded at https://github.com/SYFYN0317/DSHFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小超人完成签到,获得积分10
1秒前
有有发布了新的文献求助10
2秒前
7秒前
7秒前
wanci应助甜甜圈采纳,获得10
8秒前
zho发布了新的文献求助10
10秒前
自由伊完成签到,获得积分10
10秒前
布鲁比u完成签到 ,获得积分10
11秒前
12秒前
12秒前
17秒前
yc发布了新的文献求助10
17秒前
上官若男应助斩荆披棘采纳,获得10
19秒前
甜甜圈发布了新的文献求助10
22秒前
朴实桐发布了新的文献求助10
24秒前
26秒前
CAOHOU应助进取拼搏采纳,获得10
29秒前
瓶子完成签到,获得积分10
29秒前
天天发布了新的文献求助10
32秒前
ji完成签到,获得积分10
38秒前
38秒前
39秒前
丘比特应助再也不熬夜了采纳,获得10
40秒前
42秒前
43秒前
研友_7LMbwn完成签到,获得积分10
43秒前
xywang发布了新的文献求助10
43秒前
畅快枕头发布了新的文献求助10
44秒前
吼吼发布了新的文献求助10
45秒前
46秒前
科研通AI2S应助蔡翌文采纳,获得10
47秒前
BellaSwang发布了新的文献求助10
48秒前
48秒前
49秒前
momo发布了新的文献求助10
51秒前
皮皮虾发布了新的文献求助30
53秒前
英俊的铭应助朴实桐采纳,获得10
53秒前
53秒前
苏妲己完成签到 ,获得积分10
56秒前
123完成签到 ,获得积分10
56秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899492
求助须知:如何正确求助?哪些是违规求助? 3444172
关于积分的说明 10833647
捐赠科研通 3169019
什么是DOI,文献DOI怎么找? 1750938
邀请新用户注册赠送积分活动 846370
科研通“疑难数据库(出版商)”最低求助积分说明 789170