清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
43秒前
英俊的铭应助kiki0808采纳,获得50
45秒前
46秒前
52秒前
55秒前
57秒前
葱葱花卷发布了新的文献求助10
59秒前
kiki0808发布了新的文献求助50
1分钟前
汉堡包应助whynot采纳,获得10
1分钟前
as完成签到 ,获得积分10
1分钟前
yumihuhu发布了新的文献求助10
1分钟前
FashionBoy应助whynot采纳,获得10
1分钟前
梅赛德斯奔驰完成签到,获得积分10
1分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
Nene发布了新的文献求助10
2分钟前
谢陈完成签到 ,获得积分10
2分钟前
Joceelyn完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助whynot采纳,获得10
2分钟前
老迟到的友桃完成签到 ,获得积分10
2分钟前
2分钟前
moon发布了新的文献求助10
3分钟前
3分钟前
阔达雨灵完成签到,获得积分10
3分钟前
yumihuhu完成签到 ,获得积分10
3分钟前
李志全完成签到 ,获得积分10
3分钟前
隐形曼青应助阔达雨灵采纳,获得10
3分钟前
小青椒应助Nene采纳,获得30
3分钟前
大个应助科研通管家采纳,获得10
4分钟前
4分钟前
阔达雨灵发布了新的文献求助10
4分钟前
5分钟前
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
ding应助虚心的绿茶采纳,获得10
5分钟前
淮安石河子完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463525
求助须知:如何正确求助?哪些是违规求助? 4568173
关于积分的说明 14312553
捐赠科研通 4494213
什么是DOI,文献DOI怎么找? 2462187
邀请新用户注册赠送积分活动 1451110
关于科研通互助平台的介绍 1426474