Qualitative analysis of customer behavior in the retail industry during the COVID-19 pandemic: A word-cloud and sentiment analysis approach

情绪分析 营销 社会化媒体 业务 大流行 心理学 广告 2019年冠状病毒病(COVID-19) 计算机科学 医学 机器学习 万维网 病理 传染病(医学专业) 疾病
作者
Liana Stanca,Dan‐Cristian Dabija,Veronica Câmpian
出处
期刊:Journal of Retailing and Consumer Services [Elsevier BV]
卷期号:75: 103543-103543 被引量:11
标识
DOI:10.1016/j.jretconser.2023.103543
摘要

The COVID-19 pandemic caused a paradigm shift in customer behavior within the retail industry. Pandemic-induced restrictions and fear of product scarcity led to a change in purchasing frequency, with customers stockpiling non-perishable products such as basic foods and hygiene items. Media and social networks also played a significant role in fueling panic-buying behavior. Although sales decreased, consumption in all food categories increased due to the closure of restaurants and the need to prepare meals at home. The pandemic had a significant impact on both customers and retailers, resulting in staff reductions and a change in business strategies. To explore how Romanian food retailers’ representatives responded to the COVID-19 pandemic and adjusted to changing consumer behavior, the authors employed a qualitative research approach based on an interview guide. The data collected were analyzed using the statistical software R. In data analysis with R, the choice of functions used depends on various factors, such as the type of data, research questions, and analysis methods. Generally, commonly used functions in R for data analysis include data cleaning and manipulation functions such as subset, merge, and transform, data visualization functions such as ggplot2, and statistical modeling functions such as lm and glm, resulting in world clouds and a sentiment analysis. The results show that to develop effective business strategies, qualitative analysis helps identify the root causes of these changes. Sentiment analysis can reveal how retail chains representatives perceived the safety measures implemented in stores, such as social distancing and mask-wearing mandates, and how these measures affected customers’ shopping behavior. It also sheds light on how customers shopped and whether they planned to continue using these methods post-pandemic. Understanding these insights is crucial for retail companies to adapt their operations and better serve their customers in the post-pandemic world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助ip07in13采纳,获得30
1秒前
1秒前
夜话风陵杜完成签到 ,获得积分0
1秒前
1秒前
xudaniel发布了新的文献求助150
2秒前
mingjie完成签到,获得积分10
3秒前
科研小白发布了新的文献求助10
4秒前
5秒前
5秒前
千寒完成签到,获得积分10
6秒前
小二郎应助真的是猫采纳,获得10
6秒前
Junsir发布了新的文献求助10
6秒前
张小愚完成签到,获得积分10
8秒前
咕咕嘎嘎发布了新的文献求助30
8秒前
善学以致用应助changnan采纳,获得10
8秒前
大咖完成签到,获得积分10
8秒前
12秒前
Orange应助科研小白采纳,获得10
13秒前
15秒前
15秒前
科研通AI2S应助wlnhyF采纳,获得10
16秒前
18秒前
sxhlrm完成签到,获得积分10
18秒前
18秒前
甜甜圈完成签到 ,获得积分10
19秒前
changnan发布了新的文献求助10
20秒前
开心蛋挞发布了新的文献求助10
21秒前
22秒前
靎藥完成签到,获得积分10
26秒前
深情的采波完成签到,获得积分10
26秒前
Xiaoxiao应助拔刀斩落樱采纳,获得10
26秒前
dada完成签到 ,获得积分10
26秒前
poki发布了新的文献求助10
27秒前
28秒前
今后应助图苏采纳,获得100
28秒前
29秒前
31秒前
科研通AI5应助猩心采纳,获得30
31秒前
32秒前
小羊苏西发布了新的文献求助30
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979