Out-of-set association analysis of lung cancer drugs and symptoms based on clinical case data mining

肺癌 医学 中医药 药方 传统医学 内科学 癌症 肺癌的治疗 重症监护医学 替代医学 病理 药理学
作者
Mei Hong,Zhao Yi-dong,Tao-Li Zhong,Ming Lu,Wen-Hao Sun,Tian-Yuan Chen,Nan Hong,Yao Zhu,Dahai Xu
出处
期刊:Technology and Health Care [IOS Press]
卷期号:32 (2): 849-859
标识
DOI:10.3233/thc-230269
摘要

BACKGROUND: There are 1.8 million lung cancer deaths worldwide, accounting for 18% of global cancer deaths, including 710,000 in China, accounting for 23.8% of all cancer deaths in China. OBJECTIVE: To explore the out-of-set association rules of lung cancer symptoms and drugs through text mining of traditional Chinese medicine (TCM) treatment of lung cancer, and form medical case analysis to analyze the experience of TCM syndrome differentiation in its treatment. METHODS: The medical records of all patients diagnosed with lung cancer in Nanjing Chest Hospital from January to December 2018 were collected, and the out-of-set association analysis was performed using the MedCase v5.2 TCM clinical scientific research auxiliary platform based on the frequent pattern growth enhanced association analysis algorithm. RESULTS: In terms of TCM treatment of lung cancer, the clinical symptoms with high correlation included cough, expectoration, chest distress, and white phlegm; and the drugs with high correlation included Pinellia ternata, licorice root, white Atractylodes rhizome, and Radix Ophiopogonis; with the prescriptions based on Erchen and Maimendong decoctions. CONCLUSION: This analytical study of the medical cases of TCM treatment for lung cancer was performed using data mining techniques, and the out-of-set association rules between clinical symptoms and drugs were analyzed, including the understanding of lung cancer in TCM. Moreover, the essence of experience in drug use was gathered, providing significant scientific guidance for the clinical treatment of lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
joker_k完成签到,获得积分10
1秒前
科研通AI5应助烂漫的树叶采纳,获得10
1秒前
半柚发布了新的文献求助10
2秒前
葵葵完成签到,获得积分10
2秒前
打打应助tgoutgou采纳,获得20
4秒前
感动完成签到,获得积分20
4秒前
思源应助安静小懒猪采纳,获得10
5秒前
大方太清完成签到 ,获得积分10
5秒前
5秒前
w934420513发布了新的文献求助10
5秒前
FengXisong发布了新的文献求助10
7秒前
喜悦的秋柔完成签到,获得积分10
7秒前
科研人完成签到 ,获得积分10
8秒前
sunrase完成签到,获得积分10
10秒前
王佳豪发布了新的文献求助10
10秒前
XXXXX完成签到,获得积分10
13秒前
14秒前
15秒前
陈大侠发布了新的文献求助10
20秒前
21秒前
ZZQ完成签到 ,获得积分20
21秒前
22秒前
儒雅梦寒完成签到,获得积分10
22秒前
叫我读书仔完成签到 ,获得积分10
23秒前
26秒前
FengXisong完成签到,获得积分20
28秒前
29秒前
30秒前
半柚完成签到,获得积分10
30秒前
longh发布了新的文献求助20
35秒前
笑点低的以亦完成签到,获得积分10
35秒前
冰魂应助艺善艺善亮晶晶采纳,获得10
35秒前
huang发布了新的文献求助10
36秒前
科研力力完成签到 ,获得积分10
39秒前
打打应助TIGun采纳,获得10
40秒前
huang完成签到,获得积分10
41秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358