Explainable boosted combining global and local feature multivariate regression model for deformation prediction during braced deep excavations

可解释性 稳健性(进化) 计算机科学 人工智能 平滑的 多元统计 多元自适应回归样条 时间序列 残余物 工程类 数据挖掘 机器学习 算法 线性回归 贝叶斯多元线性回归 生物化学 化学 计算机视觉 基因
作者
Wenchao Zhang,Peixin Shi,Zhansheng Wang,Huajing Zhao,Xiaoqi Zhou,Pengjiao Jia
出处
期刊:Engineering Computations [Emerald Publishing Limited]
卷期号:40 (9/10): 2648-2666
标识
DOI:10.1108/ec-08-2022-0578
摘要

Purpose An accurate prediction of the deformation of retaining structures is critical for ensuring the stability and safety of braced deep excavations, while the high nonlinear and complex nature of the deformation makes the prediction challenging. This paper proposes an explainable boosted combining global and local feature multivariate regression (EB-GLFMR) model with high accuracy, robustness and interpretability to predict the deformation of retaining structures during braced deep excavations. Design/methodology/approach During the model development, the time series of deformation data is decomposed using a locally weighted scatterplot smoothing technique into trend and residual terms. The trend terms are analyzed through multiple adaptive spline regressions. The residual terms are reconstructed in phase space to extract both global and local features, which are then fed into a gradient-boosting model for prediction. Findings The proposed model outperforms other established approaches in terms of accuracy and robustness, as demonstrated through analyzing two cases of braced deep excavations. Research limitations/implications The model is designed for the prediction of the deformation of deep excavations with stepped, chaotic and fluctuating features. Further research needs to be conducted to expand the model applicability to other time series deformation data. Practical implications The model provides an efficient, robust and transparent approach to predict deformation during braced deep excavations. It serves as an effective decision support tool for engineers to ensure the stability and safety of deep excavations. Originality/value The model captures the global and local features of time series deformation of retaining structures and provides explicit expressions and feature importance for deformation trends and residuals, making it an efficient and transparent approach for deformation prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责吃饭完成签到,获得积分10
1秒前
Dragon完成签到 ,获得积分10
1秒前
1秒前
2秒前
简单发布了新的文献求助10
2秒前
清爽的小懒虫完成签到,获得积分10
2秒前
一天不学浑身难受完成签到 ,获得积分10
3秒前
CC发布了新的文献求助30
3秒前
3秒前
lune完成签到 ,获得积分10
4秒前
4秒前
大胆的如容完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
提灯发布了新的文献求助10
4秒前
甜财完成签到,获得积分10
4秒前
龙溪完成签到,获得积分10
5秒前
CodeCraft应助anheshu采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
大黄完成签到,获得积分10
8秒前
xinxinsci发布了新的文献求助10
9秒前
徐阳发布了新的文献求助10
9秒前
10秒前
情怀应助CC采纳,获得10
10秒前
supua完成签到 ,获得积分10
11秒前
小马甲应助顺心一凤采纳,获得10
11秒前
陶醉信封发布了新的文献求助10
12秒前
深秋远塞完成签到,获得积分10
12秒前
uppercrusteve完成签到,获得积分10
12秒前
所所应助虚幻德地采纳,获得50
13秒前
善学以致用应助张同学采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
脑洞疼应助wangyujie采纳,获得10
15秒前
云行发布了新的文献求助10
15秒前
蘑菇完成签到,获得积分10
15秒前
15秒前
华仔应助wangyujie采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663599
求助须知:如何正确求助?哪些是违规求助? 4045354
关于积分的说明 12513225
捐赠科研通 3737865
什么是DOI,文献DOI怎么找? 2064124
邀请新用户注册赠送积分活动 1093738
科研通“疑难数据库(出版商)”最低求助积分说明 974341