Long-Term Tracking of Evasive Urban Target Based on Intention Inference and Deep Reinforcement Learning

强化学习 计算机科学 推论 人工智能 稳健性(进化) 机器学习 弹道 一般化 人工神经网络 数学分析 生物化学 化学 物理 数学 天文 基因
作者
Yan Peng,Jifeng Guo,Xiaojie Su,Chengchao Bai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16886-16900
标识
DOI:10.1109/tnnls.2023.3298944
摘要

Unmanned aerial vehicles (UAVs) have been widely used in urban target-tracking tasks, where long-term tracking of evasive targets is of great significance for public safety. However, the tracked targets are easily lost due to the evasive behavior of the targets and the unstructured characteristics of the urban environment. To address this issue, this article proposes a hybrid target-tracking approach based on target intention inference and deep reinforcement learning (DRL). First, a target intention inference model based on convolution neural networks (CNNs) is built to infer target intentions by fusing urban environment information and observed target trajectory. Then, the prediction of the target trajectory can be inspired by the inferred target intentions, which can further provide effective guidance to the target search process. In order to fully explore the policy space, the target search policy is developed under a DRL framework, where the search policy is modeled as a deep neural network (DNN) and trained by interacting with the task environment. The simulation results show that the inference of the target intentions can effectively guide the UAV to search for the target and significantly improve the target-tracking performance. Meanwhile, the generalization results indicate that the proposed DRL-based search policy has high robustness to the uncertainty of the target behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助小宋采纳,获得10
1秒前
1秒前
2秒前
#include发布了新的文献求助10
3秒前
舟舟莉完成签到 ,获得积分10
4秒前
4秒前
5秒前
SYLH应助知性的土豆采纳,获得10
5秒前
lx发布了新的文献求助10
5秒前
kris发布了新的文献求助10
5秒前
6秒前
可爱的函函应助还没信采纳,获得10
6秒前
7秒前
YYy发布了新的文献求助30
9秒前
科目三应助高挑的小蕊采纳,获得10
9秒前
星空发布了新的文献求助10
10秒前
啵子发布了新的文献求助10
10秒前
英姑应助ZINC采纳,获得30
10秒前
11秒前
乐乐应助ardejiang采纳,获得10
12秒前
12秒前
冷傲机器猫完成签到,获得积分0
12秒前
冲冲冲啊发布了新的文献求助10
12秒前
务实的南露完成签到,获得积分10
13秒前
13秒前
13秒前
顾矜应助昵称采纳,获得10
14秒前
SYLH应助Linxiu采纳,获得10
15秒前
15秒前
16秒前
16秒前
大萨达完成签到,获得积分10
16秒前
于东发布了新的文献求助10
17秒前
ouwenwen完成签到,获得积分10
17秒前
HD应助稳重书双采纳,获得20
18秒前
18秒前
19秒前
xxx发布了新的文献求助30
19秒前
英俊的铭应助素月分辉采纳,获得10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787623
求助须知:如何正确求助?哪些是违规求助? 3333179
关于积分的说明 10260046
捐赠科研通 3048732
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338