Integrating Artificial Intelligence and Machine Learning Into Cancer Clinical Trials

人工智能 医学 临床试验 机器学习 生成语法 临床实习 计算机科学 内科学 家庭医学
作者
John Kang,Amit K. Chowdhry,Stephanie L. Pugh,John H. Park
出处
期刊:Seminars in Radiation Oncology [Elsevier BV]
卷期号:33 (4): 386-394 被引量:11
标识
DOI:10.1016/j.semradonc.2023.06.004
摘要

The practice of oncology requires analyzing and synthesizing abundant data. From the patient's workup to determine eligibility to the therapies received to the post-treatment surveillance, practitioners must constantly juggle, evaluate, and weigh decision-making based on their best understanding of information at hand. These complex, multifactorial decisions have a tremendous opportunity to benefit from data-driven machine learning (ML) methods to drive opportunities in artificial intelligence (AI). Within the past 5 years, we have seen AI move from simply a promising opportunity to being used in prospective trials. Here, we review recent efforts of AI in clinical trials that have moved the needle towards improved prediction of actionable outcomes, such as predicting acute care visits, short term mortality, and pathologic extranodal extension. We then pause and reflect on how these AI models ask a different question than traditional statistics models that readers may be more familiar with; how then should readers conceptualize and interpret AI models that they are not as familiar with. We end with what we believe are promising future opportunities for AI in oncology, with an eye towards allowing the data to inform us through unsupervised learning and generative models, rather than asking AI to perform specific functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾明灵完成签到,获得积分10
1秒前
3秒前
3秒前
HTniconico完成签到 ,获得积分10
3秒前
Lucas应助糟糕的铁锤采纳,获得10
3秒前
情怀应助2333采纳,获得10
3秒前
4秒前
zhaoming发布了新的文献求助10
4秒前
玩命的振家完成签到,获得积分10
5秒前
perfect完成签到 ,获得积分10
5秒前
拼搏的盼望完成签到,获得积分20
5秒前
6秒前
lizhiqian2024发布了新的文献求助10
7秒前
恭喜发布了新的文献求助10
8秒前
9秒前
萘玉颜发布了新的文献求助10
10秒前
无限飞丹完成签到,获得积分10
10秒前
11秒前
11秒前
默默zzz发布了新的文献求助10
11秒前
hh发布了新的文献求助10
12秒前
Jim发布了新的文献求助10
13秒前
天天发布了新的文献求助10
13秒前
14秒前
搜集达人应助大眼的平松采纳,获得10
14秒前
2333发布了新的文献求助10
16秒前
17秒前
17秒前
满意尔芙发布了新的文献求助10
19秒前
20秒前
希望天下0贩的0应助伯爵采纳,获得10
21秒前
星辰大海应助TTTT采纳,获得10
21秒前
科研兄发布了新的文献求助10
22秒前
瑾瑜发布了新的文献求助10
22秒前
共享精神应助流流124141采纳,获得10
23秒前
一禅完成签到 ,获得积分10
24秒前
爆米花应助Yummy采纳,获得10
24秒前
科目三应助2333采纳,获得10
24秒前
24秒前
十八发布了新的文献求助10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802565
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337284
捐赠科研通 3064213
什么是DOI,文献DOI怎么找? 1682478
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010