已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Major depressive disorder recognition by quantifying EEG signal complexity using proposed APLZC and AWPLZC

重性抑郁障碍 模式识别(心理学) 计算机科学 人工智能 信号(编程语言) 脑电图 语音识别 神经科学 认知心理学 心理学 认知 程序设计语言
作者
Xianyun Kang,Xiaoya Liu,Sitong Chen,Wenquan Zhang,Shuang Liu,Dong Ming
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:356: 105-114 被引量:4
标识
DOI:10.1016/j.jad.2024.03.169
摘要

Seeking objective quantitative indicators is important for accurately recognizing major depressive disorder (MDD). Lempel-Ziv complexity (LZC), employed to characterize neurological disorders, faces limitations in tracking dynamic changes in EEG signals due to defects in the coarse-graining process, hindering its precision for MDD objective quantitative indicators. This work proposed Adaptive Permutation Lempel-Ziv Complexity (APLZC) and Adaptive Weighted Permutation Lempel-Ziv Complexity (AWPLZC) algorithms by refining the coarse-graining process and introducing weight factors to effectively improve the precision of LZC in characterizing EEGs and further distinguish MDD patients better. APLZC incorporated the ordinal pattern, while False Nearest Neighbor and Mutual Information algorithms were introduced to determine and adjust key parameters adaptively. Furthermore, we proposed AWPLZC by assigning different weights to each pattern based on APLZC. Thirty MDD patients and 30 healthy controls (HCs) were recruited and their 64-channel resting EEG signals were collected. The complexities of gamma oscillations were then separately computed using LZC, APLZC, and AWPLZC algorithms. Subsequently, a multi-channel adaptive K-nearest neighbor model was constructed for identifying MDD patients and HCs. LZC, APLZC, and AWPLZC algorithms achieved accuracy rates of 78.29 %, 90.32 %, and 95.13 %, respectively. Sensitivities reached 67.96 %, 85.04 %, and 98.86 %, while specificities were 88.62 %, 95.35 %, and 89.92 %, respectively. Notably, AWPLZC achieved the best performance in accuracy and sensitivity, with a specificity limitation. The sample size is relatively small. APLZC and AWPLZC algorithms, particularly AWPLZC, demonstrate superior effectiveness in differentiating MDD patients from HCs compared with LZC. These findings hold significant clinical implications for MDD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏同学完成签到,获得积分10
1秒前
Jasper应助zmh采纳,获得10
1秒前
科目三应助鲤鱼越越采纳,获得10
4秒前
5秒前
lulu828发布了新的文献求助10
6秒前
lklk发布了新的文献求助10
6秒前
8秒前
9秒前
小蜜蜂发布了新的文献求助10
10秒前
11秒前
权_888完成签到 ,获得积分10
12秒前
刘瀚臻发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
三月完成签到 ,获得积分10
17秒前
shaiiwe完成签到,获得积分10
18秒前
haha发布了新的文献求助10
18秒前
19秒前
鲁鲁发布了新的文献求助10
19秒前
20秒前
南吕十八发布了新的文献求助10
20秒前
脑洞疼应助刘瀚臻采纳,获得10
20秒前
Goya完成签到,获得积分10
21秒前
23秒前
SciGPT应助ee采纳,获得10
24秒前
阿超完成签到 ,获得积分10
24秒前
tengs完成签到,获得积分10
28秒前
石中酒发布了新的文献求助10
34秒前
加油发布了新的文献求助10
34秒前
tengs发布了新的文献求助10
34秒前
cchh发布了新的文献求助10
37秒前
思源应助Hope采纳,获得10
40秒前
领导范儿应助我叫氟西汀采纳,获得10
40秒前
40秒前
怕孤单的从灵完成签到,获得积分10
41秒前
马嘉祺超绝鸡肉线完成签到,获得积分10
43秒前
45秒前
星辰大海应助huajuan2002采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076364
求助须知:如何正确求助?哪些是违规求助? 4295835
关于积分的说明 13386014
捐赠科研通 4117833
什么是DOI,文献DOI怎么找? 2255006
邀请新用户注册赠送积分活动 1259534
关于科研通互助平台的介绍 1192394