Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data

细胞 转录组 计算生物学 计算机科学 细胞生物学 生物 基因 遗传学 基因表达
作者
Chananchida Sang-aram,Robin Browaeys,Ruth Seurinck,Yvan Saeys
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2404.16358
摘要

Ligand-receptor interactions constitute a fundamental mechanism of cell-cell communication and signaling. NicheNet is a well-established computational tool that infers ligand-receptor interactions that potentially regulate gene expression changes in receiver cell populations. Whereas the original publication delves into the algorithm and validation, this paper describes a best practices workflow cultivated over four years of experience and user feedback. Starting from the input single-cell expression matrix, we describe a "sender-agnostic" approach which considers ligands from the entire microenvironment, and a "sender-focused" approach which only considers ligands from cell populations of interest. As output, users will obtain a list of prioritized ligands and their potential target genes, along with multiple visualizations. In NicheNet v2, we have updated the data sources and implemented a downstream procedure for prioritizing cell-type-specific ligand-receptor pairs. Although a standard NicheNet analysis takes less than 10 minutes to run, users often invest additional time in making decisions about the approach and parameters that best suit their biological question. This paper serves to aid in this decision-making process by describing the most appropriate workflow for common experimental designs like case-control and cell differentiation studies. Finally, in addition to the step-by-step description of the code, we also provide wrapper functions that enable the analysis to be run in one line of code, thus tailoring the workflow to users at all levels of computational proficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助子木采纳,获得10
1秒前
星辰大海应助赱貓歩嘀魚采纳,获得10
1秒前
1秒前
3秒前
5秒前
英俊的铭应助大黄采纳,获得10
5秒前
5秒前
5秒前
6秒前
科研通AI6.1应助段yt采纳,获得10
6秒前
Jerryis完成签到,获得积分10
6秒前
科研通AI6.1应助廖思巧采纳,获得10
6秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Jasper应助zjl采纳,获得10
8秒前
9秒前
aaaa完成签到,获得积分20
10秒前
kk发布了新的文献求助30
10秒前
山河发布了新的文献求助10
10秒前
你好发布了新的文献求助10
11秒前
12秒前
风趣烤鸡完成签到,获得积分10
12秒前
善学以致用应助自觉世界采纳,获得10
12秒前
充电宝应助zl987采纳,获得10
13秒前
罗罗完成签到,获得积分0
13秒前
ding应助小仙女采纳,获得10
15秒前
vicky完成签到 ,获得积分10
15秒前
15秒前
zhaoxi发布了新的文献求助20
15秒前
SciGPT应助sunzhuxi采纳,获得10
16秒前
www完成签到 ,获得积分10
16秒前
总遇春完成签到,获得积分10
17秒前
17秒前
华仔应助everyone_woo采纳,获得10
18秒前
18秒前
gzhoax完成签到 ,获得积分10
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735617
求助须知:如何正确求助?哪些是违规求助? 5361598
关于积分的说明 15330603
捐赠科研通 4879809
什么是DOI,文献DOI怎么找? 2622330
邀请新用户注册赠送积分活动 1571336
关于科研通互助平台的介绍 1528174