Highly Stretchable, Low‐Hysteresis, and Adhesive TA@MXene‐Composited Organohydrogels for Durable Wearable Sensors

材料科学 胶粘剂 纳米材料 磁滞 智能聚合物 纳米复合材料 聚合物 智能材料 复合材料 自愈水凝胶 纳米技术 高分子化学 图层(电子) 量子力学 物理
作者
Ying Liu,Guoxing Tian,Yingjie Du,Pengju Shi,Na Li,Yunfeng Li,Zhihui Qin,Tifeng Jiao,Ximin He
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (30) 被引量:83
标识
DOI:10.1002/adfm.202315813
摘要

Abstract As wearable sensors advance rapidly, demands for multifunctional conductive soft materials are ever higher, including high stretchability, resilience, adhesiveness and stability, simultaneously in one material, for stable long‐term use. Nanocomposite hydrogels incorporating conductive two‐dimensional (2D) nanofillers, such as MXene‐composited gels, emerge as promising candidates. Yet, fulfilling all above requirements, particularly large stretchability with low hysteresis, remains a challenge, owing to the easy oxidation and weak interactions of MXene nanosheets with polymer chains. Herein, an interfacial engineering strategy is proposed, where tannic acid (TA) with high‐density hydroxyl groups is introduced to encapsulate MXene into a stable TA@MXene nano‐motif and meanwhile increase the hydrogen‐bonding interactions between TA@MXene and polymer network. By incorporating TA@MXene into poly(hydroxyethyl acrylate) (PHEA) network in a glycerol/water binary solvent, the obtained organohydrogel exhibits integrated properties of high stretchability (>500%) with low hysteresis (<3%), superior fatigue resistance (consistent hysteresis over 500 cycles at 300% strain), good adhesiveness, along with long‐term stability (>7 days) and antifreezing abilities (−40 °C). Such organohydrogels demonstrate superior strain‐sensitivity and thermosensitive capacities, enabling accurate and reliable detection of human movements, electrocardiogram signals, and body temperature. This general approach of stabilizing nanomaterials while effectively enhancing nanomaterial‐polymer bonding is applicable for synthesizing diverse high‐performance nanocomposited gels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助ZRR采纳,获得10
3秒前
3秒前
4秒前
5秒前
6秒前
ding应助口算NS方程采纳,获得10
7秒前
7秒前
8秒前
哇塞菌菌发布了新的文献求助10
8秒前
FeiBai发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
fenghy完成签到,获得积分10
12秒前
Ukiss完成签到 ,获得积分10
12秒前
林文笔发布了新的文献求助10
13秒前
瓜瓜发布了新的文献求助10
14秒前
星辰大海应助解羽采纳,获得10
14秒前
王惠琼完成签到,获得积分10
15秒前
15秒前
ceeray23发布了新的文献求助20
15秒前
15秒前
16秒前
16秒前
Taiko发布了新的文献求助10
16秒前
LL发布了新的文献求助10
16秒前
狼来了aas完成签到,获得积分10
17秒前
18秒前
18秒前
共享精神应助LL采纳,获得10
20秒前
自信筮发布了新的文献求助10
20秒前
Owen应助AI imaging采纳,获得10
20秒前
瓜瓜完成签到,获得积分10
21秒前
23秒前
在水一方应助郭郭采纳,获得10
24秒前
科研通AI5应助笇采余采纳,获得10
24秒前
口算NS方程完成签到,获得积分10
24秒前
25秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4389732
求助须知:如何正确求助?哪些是违规求助? 3880792
关于积分的说明 12087343
捐赠科研通 3524731
什么是DOI,文献DOI怎么找? 1934203
邀请新用户注册赠送积分活动 975116
科研通“疑难数据库(出版商)”最低求助积分说明 873056