Evaluating deep learning methods applied to Landsat time series subsequences to detect and classify boreal forest disturbances events: The challenge of partial and progressive disturbances

泰加语 遥感 系列(地层学) 时间序列 北方的 自然地理学 计算机科学 地质学 机器学习 地理 林业 古生物学
作者
Pauline Perbet,Luc Guindon,Jean-François Côté,Martin Béland
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:306: 114107-114107 被引量:4
标识
DOI:10.1016/j.rse.2024.114107
摘要

The monitoring of forest ecosystems is significantly affected by the lack of consistent historical data of low-severity (forest partially disturbed) or gradual disturbance (e.g. eastern spruce budworm epidemic). The goal of this paper is to explore the use of a subset of Landsat time series and deep learning models to identify both the type and the year of disturbances, including low-severity and gradual disturbances, in the boreal forest of eastern Canada at the pixel level. Remote sensing data such as the spectral information from Landsat time series are the best available option for large scale observations of disturbances that go back decades. Traditional modeling approaches, like LandTrendr, require substantial handcrafted pre-processing to remove noise and to extract temporal features from the image sequences before using them as input to a classical machine-learning model. Deep-learning models can autonomously discern which features are relevant within the coarse temporal and spectral information from the Landsat annual dense time series. We evaluated the performance of TempCNN and Transformer model in detecting and classifying the type and the year of the forest disturbance using Landsat time series subsequences. Our findings resulted in the generation of four disturbance maps outlining the forest history from 1986 to 2021 within the eastern Canadian boreal forest. Our experimental outcomes demonstrate several significant benefits of employing deep learning models. Firstly, using noisy Landsat time series they achieve comparable accuracy for classifying fire and total harvesting than existing publicly available disturbance maps. Secondly, the use of shorter time series subsequence with deep learning models enables to map adequately different overlapping disturbances occurring in the complete time series. Finally, they increase the number of distinguishable disturbance classes by adding partial harvesting, gradual disturbances, and forest recovery from older events, making them useful approaches for obtaining the first remote sensing-based map for areas affected by the eastern spruce budworm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
50009797发布了新的文献求助10
刚刚
完美世界应助凉拌鱼腥草采纳,获得10
1秒前
糖糖爱干饭完成签到,获得积分10
2秒前
2秒前
芮仔发布了新的文献求助10
3秒前
安彩青完成签到 ,获得积分10
3秒前
嗷嗷发布了新的文献求助30
3秒前
3秒前
月亮打盹儿完成签到 ,获得积分10
4秒前
ll发布了新的文献求助10
4秒前
JioJio完成签到,获得积分20
4秒前
整齐的怀曼完成签到,获得积分20
4秒前
青青草发布了新的文献求助10
5秒前
pluto应助糖糖爱干饭采纳,获得10
6秒前
lyj完成签到,获得积分10
6秒前
7秒前
研友_ZzrwqZ发布了新的文献求助10
7秒前
快乐滑板发布了新的文献求助30
9秒前
爆米花应助子V采纳,获得10
9秒前
桃子e完成签到 ,获得积分10
10秒前
Landscape完成签到,获得积分10
12秒前
12秒前
Lucky完成签到,获得积分10
12秒前
WissF-发布了新的文献求助10
12秒前
深情安青应助青青草采纳,获得10
13秒前
13秒前
15秒前
研友_VZG7GZ应助Landscape采纳,获得10
18秒前
kyt666发布了新的文献求助10
19秒前
19秒前
kk发布了新的文献求助30
20秒前
琴生发布了新的文献求助10
23秒前
23秒前
24秒前
梓骞发布了新的文献求助10
24秒前
朱晓宇发布了新的文献求助20
25秒前
26秒前
小颜发布了新的文献求助10
26秒前
28秒前
科研通AI2S应助淡淡的忆彤采纳,获得10
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097565
求助须知:如何正确求助?哪些是违规求助? 3635255
关于积分的说明 11522834
捐赠科研通 3345513
什么是DOI,文献DOI怎么找? 1838684
邀请新用户注册赠送积分活动 906224
科研通“疑难数据库(出版商)”最低求助积分说明 823497