A Multidimensional Feature-Driven Ensemble Model for Accurate Classification of Complex Power Quality Disturbance

人工智能 计算机科学 模式识别(心理学) 特征(语言学) 偏移量(计算机科学) 深度学习 特征提取 计算 噪音(视频) 机器学习 工程类 算法 哲学 语言学 图像(数学) 程序设计语言
作者
Yulong Liu,Ding Yuan,Fan Hongwei,Tao Jin,Mohamed A. Mohamed
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:13
标识
DOI:10.1109/tim.2023.3265756
摘要

As the proportion of power electronics-related facilities in modern power systems increases, the types of power quality disturbances (PQDs) tend to become more complex. Traditional methods struggle to accurately perform the classification task of complex PQDs under artificial empirical guidance. This paper proposes a multidimensional feature-driven ensemble model for the accurate classification of complex PQDs, which can complete the self-learning function from data. Unlike existing deep learning-based methods, this model considers both spatial features in the time-frequency domain and temporal relational features. Based on fully convolutional networks (FCN) and bidirectional gated recurrent unit (BiGRU), sub-modules suitable for multidimensional features mining are constructed separately. Meanwhile, the squeeze-and-excitation network (SENet) is introduced to complete the computation of the channel attention mechanism for each convolutional layer, which effectively improves the training efficiency and classification accuracy of the model. The proposed model has been thoroughly tested to validate its effectiveness on a synthetic dataset consisting of 71 different types of PQDs under varying signal-to-noise ratios (SNRs). Additionally, the model has been proven to be robust in the face of external factors such as DC offset, frequency variations, and phase jumps. To further demonstrate its reliability, the proposed model has been tested on real PQDs generated from an AC power source. Results from both simulation and experimentation have conclusively shown that the proposed method is superior to existing deep learning-based methods for the classification of complex PQDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
单于无极应助糊涂的霸采纳,获得10
6秒前
嗨是完成签到,获得积分10
9秒前
精明的书白完成签到,获得积分10
10秒前
cwy发布了新的文献求助10
11秒前
落后画笔完成签到,获得积分10
15秒前
cwy发布了新的文献求助10
19秒前
黄钊杰完成签到,获得积分10
20秒前
1_0完成签到 ,获得积分10
25秒前
今后应助cwy采纳,获得10
29秒前
雨晴完成签到,获得积分10
30秒前
31秒前
35秒前
香蕉寒梅完成签到,获得积分10
36秒前
lalafish发布了新的文献求助10
36秒前
pluto应助科研通管家采纳,获得10
37秒前
pluto应助科研通管家采纳,获得10
37秒前
37秒前
FashionBoy应助wahaha采纳,获得10
42秒前
lalafish完成签到,获得积分10
44秒前
kk完成签到,获得积分10
45秒前
49秒前
49秒前
53秒前
科目三应助Vintage采纳,获得10
53秒前
勤奋旭尧发布了新的文献求助10
59秒前
怡米李发布了新的文献求助10
59秒前
pop完成签到,获得积分10
1分钟前
HY完成签到,获得积分10
1分钟前
1分钟前
dd完成签到,获得积分10
1分钟前
琛哥物理发布了新的文献求助20
1分钟前
1分钟前
鲲kun发布了新的文献求助10
1分钟前
幸运星完成签到 ,获得积分10
1分钟前
怡米李完成签到,获得积分10
1分钟前
行者完成签到 ,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
1分钟前
小冯完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781383
求助须知:如何正确求助?哪些是违规求助? 3326891
关于积分的说明 10228650
捐赠科研通 3041878
什么是DOI,文献DOI怎么找? 1669613
邀请新用户注册赠送积分活动 799161
科研通“疑难数据库(出版商)”最低求助积分说明 758751