亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrostatic Potential as Solvent Descriptor to Enable Rational Electrolyte Design for Lithium Batteries

溶剂化 电解质 溶剂 锂(药物) 材料科学 溶剂效应 静电学 化学 物理化学 有机化学 医学 电极 内分泌学
作者
Yanzhou Wu,Qiao Hu,Hongmei Liang,Aiping Wang,Hong Xu,Li Wang,Xiangming He
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (22) 被引量:128
标识
DOI:10.1002/aenm.202300259
摘要

Abstract Artificial intelligence/machine learning (AI/ML) applied to battery research is considered to be a powerful tool for accelerating the research cycle. However, the development of appropriate materials descriptors is often the first hurdle toward implementing meaningful and accurate AI/ML. Currently, rational solvent selection remains a significant challenge in electrolyte development and is still based on experiments. The dielectric constant (ε) and donor number (DN) in electrolyte design are insufficient. Finding theoretically computable solvent descriptors for evaluating Li + solvation is a significant step toward accelerating electrolyte development. Here, based on the electrostatic interaction between Li + and solvent, the electrostatic potential (ESP) of electrolyte solvent is calculated by density functional theory calculations and reveals significant regularity. ESP as a direct and simple solvent descriptor for conveniently designing electrolytes is proposed. The lowest negative electrostatic potential (ESP min ) ensures the nucleophilic capacity of the solvating solvent and the weak ESP min means decreased solvation energy. Weak ESP min and strong highest positive electrostatic potential (ESP max ) are the main characteristics of non‐solvating antisolvents. Using the plot of ESP min – ESP max strong solvating solvent, weakly solvating solvent, or antisolvent are identified that have been used in electrolyte engineering. This solvent descriptor can boost AI/ML to develop high performance electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Owen应助西安浴日光能赵炜采纳,获得10
50秒前
风清扬应助AliEmbark采纳,获得10
57秒前
AliEmbark完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小瓶盖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Yunism发布了新的文献求助10
2分钟前
2分钟前
charih完成签到 ,获得积分10
3分钟前
3分钟前
球球发布了新的文献求助10
3分钟前
可爱的函函应助球球采纳,获得10
3分钟前
球球完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Yixin发布了新的文献求助10
3分钟前
4分钟前
核桃应助研友_8WzN2Z采纳,获得10
4分钟前
4分钟前
丁元英完成签到,获得积分10
4分钟前
丁元英发布了新的文献求助10
4分钟前
今后应助Fern采纳,获得10
4分钟前
Milton_z完成签到 ,获得积分0
4分钟前
4分钟前
曾昊天发布了新的文献求助10
5分钟前
曾昊天完成签到,获得积分20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
斯文败类应助LL采纳,获得30
5分钟前
5分钟前
LL发布了新的文献求助30
5分钟前
这次会赢吗完成签到 ,获得积分10
6分钟前
Yunism完成签到,获得积分20
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4178000
求助须知:如何正确求助?哪些是违规求助? 3713436
关于积分的说明 11708129
捐赠科研通 3395179
什么是DOI,文献DOI怎么找? 1862753
邀请新用户注册赠送积分活动 921448
科研通“疑难数据库(出版商)”最低求助积分说明 833184