Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability

医学 互换性 脊柱(分子生物学) 前瞻性队列研究 放射科 医学物理学 人工智能 外科 生物信息学 计算机科学 生物 程序设计语言
作者
Haidara Almansour,Judith Herrmann,Sebastian Gassenmaier,Saif Afat,Johann Jacoby,Gregor Koerzdoerfer,Dominik Nickel,Mahmoud Mostapha,Mariappan S. Nadar,Ahmed E. Othman
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:38
标识
DOI:10.1148/radiol.212922
摘要

Background Deep learning (DL)-based MRI reconstructions can reduce examination times for turbo spin-echo (TSE) acquisitions. Studies that prospectively employ DL-based reconstructions of rapidly acquired, undersampled spine MRI are needed. Purpose To investigate the diagnostic interchangeability of an unrolled DL-reconstructed TSE (hereafter, TSEDL) T1- and T2-weighted acquisition method with standard TSE and to test their impact on acquisition time, image quality, and diagnostic confidence. Materials and Methods This prospective single-center study included participants with various spinal abnormalities who gave written consent from November 2020 to July 2021. Each participant underwent two MRI examinations: standard fully sampled T1- and T2-weighted TSE acquisitions (reference standard) and prospectively undersampled TSEDL acquisitions with threefold and fourfold acceleration. Image evaluation was performed by five readers. Interchangeability analysis and an image quality-based analysis were used to compare the TSE and TSEDL images. Acquisition time and diagnostic confidence were also compared. Interchangeability was tested using the individual equivalence index regarding various degenerative and nondegenerative entities, which were analyzed on each vertebra and defined as discordant clinical judgments of less than 5%. Interreader and intrareader agreement and concordance (κ and Kendall τ and W statistics) were computed and Wilcoxon and McNemar tests were used. Results Overall, 50 participants were evaluated (mean age, 46 years ± 18 [SD]; 26 men). The TSEDL method enabled up to a 70% reduction in total acquisition time (100 seconds for TSEDL vs 328 seconds for TSE, P < .001). All individual equivalence indexes were less than 4%. TSEDL acquisition was rated as having superior image noise by all readers (P < .001). No evidence of a difference was found between standard TSE and TSEDL regarding frequency of major findings, overall image quality, or diagnostic confidence. Conclusion The deep learning (DL)-reconstructed turbo spin-echo (TSE) method was found to be interchangeable with standard TSE for detecting various abnormalities of the spine at MRI. DL-reconstructed TSE acquisition provided excellent image quality, with a 70% reduction in examination time. German Clinical Trials Register no. DRKS00023278 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Hallinan in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助小凡同学采纳,获得10
1秒前
暴躁的诗槐完成签到,获得积分10
1秒前
3秒前
甘雪娜发布了新的文献求助30
3秒前
4秒前
852应助丢丢银采纳,获得10
5秒前
CX完成签到 ,获得积分10
6秒前
9秒前
10秒前
10秒前
搜集达人应助闪明火龙果采纳,获得10
12秒前
雪白的平蓝关注了科研通微信公众号
14秒前
包容的映天完成签到 ,获得积分10
14秒前
科研渣子发布了新的文献求助10
14秒前
QIZH发布了新的文献求助10
14秒前
小马甲应助Lin采纳,获得10
15秒前
QIZH完成签到,获得积分10
19秒前
大恩区完成签到,获得积分10
20秒前
不如实干兴邦完成签到,获得积分10
22秒前
myt完成签到,获得积分10
22秒前
嘻嘻叮完成签到,获得积分10
22秒前
22秒前
26秒前
can完成签到,获得积分10
31秒前
31秒前
丢丢银发布了新的文献求助10
36秒前
深情安青应助小李采纳,获得10
36秒前
闪明火龙果完成签到,获得积分20
40秒前
科研通AI5应助丢丢银采纳,获得10
50秒前
称心曼岚完成签到 ,获得积分10
52秒前
所所应助煎蛋采纳,获得10
54秒前
56秒前
小李完成签到 ,获得积分10
56秒前
57秒前
默默板凳完成签到 ,获得积分10
58秒前
jingrong发布了新的文献求助10
1分钟前
惧感完成签到 ,获得积分10
1分钟前
Lin发布了新的文献求助10
1分钟前
wanci应助风中乐曲采纳,获得10
1分钟前
秭归子归发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040