High-resolution image reconstruction with latent diffusion models from human brain activity

计算机科学 人工智能 生成模型 忠诚 生成语法 透视图(图形) 深度学习 计算机视觉 模式识别(心理学) 机器学习 电信
作者
Yu Takagi,Shinji Nishimoto
标识
DOI:10.1101/2022.11.18.517004
摘要

Reconstructing visual experiences from human brain activity offers a unique way to understand how the brain represents the world, and to interpret the connection between computer vision models and our visual system. While deep generative models have recently been employed for this task, reconstructing realistic images with high semantic fidelity is still a challenging problem. Here, we propose a new method based on a diffusion model (DM) to reconstruct images from human brain activity obtained via functional magnetic resonance imaging (fMRI). More specifically, we rely on a latent diffusion model (LDM) termed Stable Diffusion. This model reduces the computational cost of DMs, while preserving their high generative performance. We also characterize the inner mechanisms of the LDM by studying how its different components (such as the latent vector of image Z, conditioning inputs C, and different elements of the denoising U-Net) relate to distinct brain functions. We show that our proposed method can reconstruct high-resolution images with high fidelity in straightforward fashion, without the need for any additional training and fine-tuning of complex deep-learning models. We also provide a quantitative interpretation of different LDM components from a neuroscientific perspective. Overall, our study proposes a promising method for reconstructing images from human brain activity, and provides a new framework for understanding DMs. Please check out our webpage at https://sites.google.com/view/stablediffusion-with-brain/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xyzhang完成签到,获得积分10
刚刚
刚刚
李爱国应助哈喽采纳,获得10
刚刚
1秒前
拥挤而独行完成签到,获得积分10
1秒前
JamesPei应助乙醇采纳,获得10
1秒前
Elec完成签到 ,获得积分10
2秒前
爆米花应助阿木木采纳,获得10
2秒前
傅英俊完成签到,获得积分10
2秒前
罗中翠完成签到,获得积分10
2秒前
xx发布了新的文献求助20
2秒前
CodeCraft应助常佳楠采纳,获得10
2秒前
曼粒子发布了新的文献求助10
3秒前
九日完成签到,获得积分10
3秒前
3秒前
Bruce Lin发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
酷波er应助东方采纳,获得10
4秒前
maorongfu456完成签到,获得积分10
4秒前
moruifei完成签到,获得积分10
4秒前
优秀井完成签到,获得积分10
4秒前
西NO米娅完成签到,获得积分10
5秒前
redflower完成签到,获得积分10
5秒前
拓跋涵易发布了新的文献求助10
5秒前
万骛发布了新的文献求助10
5秒前
冰雪物语发布了新的文献求助10
5秒前
wanci应助五五我采纳,获得10
6秒前
兜兜窦完成签到,获得积分10
6秒前
6秒前
明天完成签到,获得积分10
6秒前
maxinghrr完成签到,获得积分0
7秒前
共享精神应助顺利安柏采纳,获得10
7秒前
斯文败类应助CC采纳,获得10
7秒前
研友_nVWP2Z完成签到 ,获得积分10
8秒前
8秒前
mao应助迟安歌采纳,获得20
8秒前
9秒前
9秒前
曼粒子完成签到,获得积分10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808241
求助须知:如何正确求助?哪些是违规求助? 3352939
关于积分的说明 10362041
捐赠科研通 3069095
什么是DOI,文献DOI怎么找? 1685376
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150